平成 30 年度 情報•通信工学科 コンピュータサイエンスコース 卒業研究発表会

仮想コレクションケースの二画面化

情報理工学コース 学籍番号：1211008 成見研究室 五十嵐達郎

1 はじめに

図 1：仮想コレクションケース（参考文献［1］の図1．1 か ら引用）

仮想コレクションケース［1］とは，モニター内に展示物が飾られているかのように見せるシステムである。こ れは現実なら大量の展示物に対応したスペースを確保 しなければならないという問題や，展示物の劣化や損傷 の可能性があるといった問題を解決するために提案さ れたものである．
先行研究では観察者の位置に合わせて最適な立体画像を表示することで実装したが，コンピュータ用ディ スプレイやノートパソコン上に表示していたため，あ まりコレクションケースの外観をおらず飾る楽しみに欠けるという問題があった。
そこで本研究では，直方体状のケースを作り，その側面に LCD パネル（Liquid Crystal Display）をはめ込む ことで外観をコレクションケースに似せた。また， 2 画面に対応することで，より広く上下左右に動いても展示物が見えるようにし，展示物の存在感を高めた。

2 既存研究と既存製品

2.1 裸眼 3 D ディス プレイを使った仮想コクション ケース［1］
このシステムは視点検出デバイスにより観察者の視点を取得，その位置に対応した展示物の画像を 3D ディ スプレイを用いて立体表示させるものである。システ ムは展示物の撮影システムと立体表示システムの二つ に分けられる．撮影システムとは展示物の表示を滑ら

かにするために様々な方向からコマ撮りする専用のカ メラのことであり，観察者の位置に対して適切な立体画像を表示するのが立体表示システムである。
問題点としてモニターに画像を3D 表示しただけであ るため展示物によっては立体感が乏じいという問題と，観察者の位置に対して展示物が回転するが，現実に比 べて回転が大きく存在感が薄いという問題があった。

2.2 フィギュアが 360° みれるフィギュコレ

［2］
コレクションを仮想化することを目的としたサービ スとしてフィギュコレがある。これはフィギュア会社 と提携しており，発売前のフィギュアを手に取って見 ているかのように 360° 見ることができ棚に飾ること もできる．しかしディスプレイの中に表示されている だけでリアルな存在感はなく，3Dモデルを画面上で動 かしてみているという感覚である。

3 システム概要

図 2 は本システムの概要図である。本システムはま ず展示物をコマ撮りするのではなく，展示物を 3 D ス キャンできるアプリ（iTSeez3D［3］）とカメラ（Structure Senser［4］）を用いて3D モデルにする，そうして作成し た3D モデルを Unity ${ }^{1}$ 上で仮想空間を作成し配置する

図 2：システム図

ことで様々な方向から観察できるよう対応させる．た

[^0]だし今回は仮想の展示物として Unity ちゃん［5］という 3D モデルを用いている．
視点検出デバイスの Kinect² ${ }^{2}$ により取得した観察者の視点情報を元に，仮想空間上で対応した視点をそれぞれ の画面に表示させることで，視点に合った展示物の映像 の表示を行う。

4 ケースの作成と二画面表示

本研究では直方体上のケースを作成し，その正面と側面にそれぞれ 2 つの LCD パネルをはめ込むことで外観をコレクションケースに近づける。Unityでは，異な るカメラビューを別々のモニターに同時に表示すること が可能である。そこで作成したケース正面のモニター には展示物を正面から撮影するようなカメラビューを， ケース側面には側面を撮るカメラビューをそれぞれ対応させた。

5 Kinect の対応とカメラの改良

観察者の位置は先行研究と同じく Kinect により取得 する．始めは先行研究同様観察者の位置に合わせて展示物の周りを上下左右，真球上に動くカメラを作成し た。しかし展示物を常に正面に捉えるため二画面にす ると展示物が二つ見えてしまうことや，ケースの壁や角が回転してみえるという問題があった。そこでカメ ラのパラメータを変更することでケースの表面の映像 だけを切り出すカメラを作成し，二画面でも展示物が一つで中心に見えるように改良した。

図 3：カメラの改良前

図 4：カメラの改良後

6 評価

実際に同じサイズのケースを作成し，展示物に見立 てて直方体状の物体を置く，その物体とケースが同じ

[^1]比率になるように，システム上に直方体を表示させる。 この状態で観察位置を変え，展示物がどの様に映るか比較した。比較には展示物の端が画面内にどのように表示されているか，目盛りを上下左右に置くことで測定した。
その結果現実とのずれは左右で最大 2 cm ，上下で最大 4 cm となった。よって Kinect とUnity の座標をま だ合わせきれていないということが分かった。

図 5：仮想のケース

図6：現実のケース

7 まとめと今後の課題

本研究では仮想コレクションケースを二画面化し，よ り本物に近い見え方を実現した。今後はK inectの取得 した観察者の座標とUnity 上のケースを撮影するカメ ラの位置を正しく合わせることが課題となる。
また本研究では立体表示を実装出来なかったため，奥行きを感じることができず，画面に表示しているだけ という感覚がまだ感じられる．よって当初の予定のよ うに 3D モニターを用いてケースを作成することが必要である。

参考文献

［1］神澤俊，『裸眼3D ディスプレイを使った仮想コレクショ ンケース』，電気通信大学電気通信学部情報工学科成見研究室卒業論文，2013年
［2］フィギュアが 360 唯みれるフィギュコレ， http：／／www．uxdesigntokyo．jp／apps／figcol／figcol．html
［3］iTSeez3D，http：／／itseez3d．com
［4］Structure Senser，https：／／structure．io
［5］Unity ちゃん，http：／／unity－chan．com／

[^0]: ${ }^{1}$ Unity とは，Windows と OS X 上で動作する統合型のゲーム開発環境である。様々なプラットフォームへ向けた高度な3D アプ リケーションを制作することができる。

[^1]: ${ }^{2}$ RGB カメラ，深度センサー，マルチアレイマイクロフォン，お よび専用ソフトウェアを動作させるブロセッサを内蔵したセンサー といったものが搭載されており，ブレイヤーの位置，動き，声，顔を認識することができる。

