
平成26年度　修士論文

High Performance Computing on Mobile
Devices

電気通信大学大学院　情報理工学研究科

情報・通信工学専攻　成見研究室

学籍番号　1331098

氏名　MARTINEZ NORIEGA Edgar Josafat

指導教員　成見　哲教授

副指導教員　寺田実　准教授

平成27年1月30日

概要

モバイルデバイス上の高性能コンピューティング

マルチネス　ノリエガ　エドガー　ホサファット

電気通信大学

近年GPGPU (General Purpose Computing on Graphics Processors Units)が盛んになって

おり、GPUを使って特定のアプリケーションを高速化することが行われている。GPUは

スーパーコンピューターを構築する有効な選択肢の一つとなっており、現在のトッ

プ10のスーパーコンピューター中の2台がPFlops(1015の浮動小数点演算/秒)を達成するた

めにGPUが使われている。GPUはコアを沢山備えた並列処理装置であり、階層的なメ

モリ構造になっている。このため、良いコストパフォーマンスが期待できる。2006年

にNVIDIAがCUDA(Compute Unified Device Architecture)をリリースして以来、GPUを簡

単にプログラムすることが出来るようになった。

一方、携帯性・低消費電力・タッチスクリーン・接続性など独特の機能を持つモバイ

ル機器は、コンピュータとやり取りするための新しい潮流として興味深い進化を遂げて

いる。アプリケーションプログラムから見ると、人々がどうやってデータを扱うか、ど

うやってデータを可視化すべきか、などが変わってきている。モバイル機器にも何らか

のGPUが内蔵されていることが多いが、ARM CPUを主流とするモバイル機器においては

それ程性能を期待することは出来ない。

クラウドやグリッドコンピューティングは、サーバー側の高性能な計算能力をモバ

イル機器から活用するための有望なアプローチの一つである。GPU仮想化ツールであ

るDS-CUDA (Distributed-Shared CUDA)も、そのような技術の一つである。DS-CUDAは

ソフトウェアレベルでGPUを仮想化するもので、クライアントマシンからローカルネット

ワーク経由でリモートのGPUを透過的に使うことが出来る。ソースコードを変更しなくて

も、リコンパイルするだけでGPUを搭載しないデバイスで見かけ上GPUを使ってアプリ

ケーションを加速することができる。しかし、クライアントとサーバ間の通信がボトル

ネックになる可能性がある。

本研究では、Androidデバイス上でNaClの分子動力学シミュレーションを加速し

III

た。DS-CUDAを使うことでGPUを使って原子間の力及び速度の計算を高速化することが

出来た。もともとLinuxしかサポートされていなかったDS-CUDAをAndroid上で動作させ

るために、NDK(ネイティブ開発キット)を用いてCコードを動作させ、OpenGL ES 1.1を

用いて描画した。クライアントマシンとしてNVIDIAのSHIELDタブレットを使用し、

サーバとしてGeForce GTX 680Mが搭載されているノートパソコンを使用した。サーバー

はKnoppix 7.1 とCUDA 6.0上で動作させた。当研究ではKnoppix内にGPUやCUDA,DS-

CUDAを動作させる環境を組み込んだは「Knoppix for CUDA」と呼ぶディストリビュー

ションを作っており、そのDVDからブートするだけでDS-CUDAサーバーが構築できる。

5,832原子のシミュレーションを行った場合、SHIELDタブレットのCPU上では0.073

GFLOPSの速度しか出なかったものが、本研究により5700倍高速の420 GFLOPSの計算速

度を達成した。システムのボトルネックは主にネットワークの帯域幅であるが、原子数

が多い場合（例えば5,382原子）には球を描画するルーチンがネックであることが分かっ

た。原子数が多い場合は計算量が大きくなるため相対的にネットワークはボトルネックと

はならない。

IV

Abstract

High Performance Computing on Mobile Devices

by

MARTINEZ NORIEGA Edgar Josafat

The University of Electro-Communications

Professor Narumi Tetsu

GPGPU (General Purpose Computing on Graphics Processors Units) has become one of

the most common ways to accelerate scientific applications and built supercomputers. At

the present time, 2/10 top supercomputers are equipped with GPUs to achieve PFlops (1015

floating operation per second) of performance. The GPU is designed with massively pro-

grammable parallel processors, different memory hierarchy and many core chips, thus are

really attractive due to its performance/cost benefit. NVIDIA is one of the pioneers to offer

an easy way to program and develop for GPUs through CUDA (Compute Unified Device

Architecture), released in 2006.

On the other hand, mobile devices are becoming another interesting way to interact with

computers due to its specific and particular capabilities:mobility, portability, low power con-

sumption, touch-screen, connectivity, and others. In this scenario, applications are changing

the direction in which people interact and visualize data. Mobile devices are dotted with

GPUs as well, however these ones cannot be easily used to achieve more performance than

only using the mobile processor e.g ARM.

Cloud or grid computing is one of the promising approaches to exploit the computing power

on the server side for mobile devices using high performance computing frameworks such as

DS-CUDA (Distributed-Shared CUDA). DS-CUDA is a GPU virtualization tool at software

level that allow us to borrow an NVIDIA GPU remotely from our local network to accelerate

an app inside of a device/computer which does not contain a physical GPU. DS-CUDA en-

ables us to use our own CUDA source code without any major modifications to accelerate the

application, however communication between the client and server might become bottleneck.

We implemented an NaCl MD (Molecular Dynamics) simulation with CUDA on an Android

V

Device. On the simulator the behaviour between several ions of Na+ and Cl- at vacuum level

is shown. We accelerate the computation of force, velocity and coordinate using CUDA via

DS-CUDA. Other process are running on C code through NDK (Native Development Kit) and

OpenGL ES 1.1 is used for rendering the visuals. We used an NVIDIA’s SHIELD tablet as a

client, and a laptop as a server equipped with GeForce GTX 680M running with Knoppix 7.1

linux and CUDA 6.0. The server can be built just by booting from ”KNOPPIX for CUDA”

DVD, which we distribute on the web. The server is connected via wired Gigabit-ethernet to

our access point and the client is connected via Wifi 802.11n. We reached up to 420 Gflops in

force computation on a simulation with 5,832 ions, 5,700 times faster than the 0.073 Gflops

delivered from CPU implementation on SHIELD. The bottleneck in our simulation is the

bandwidth delivered from our local LAN, although we tried to minimize the communication

between server and client, updating every 100 MD steps. Rendering the spheres is also a

bottleneck in the application, for large amount of particles (5,382 ions), however the amount

of operations per second becomes larger as the number of bodies increases.

VI

Acknowledgements

Special thanks goes to Professor Narumi Tetsu for all its support since the beginning of this

journey. For all its advices, knowledge and encourage to continue. For all opportunities he

had gave me and believed in me. For all support during my permanency in Japan. Also to

Professor Terada for leading this project. As well as for Dr. Oikawa and Dr. Takai for their

valuable advices over DS-CUDA and molecular dynamics. I want to express gratitude as well

to Dr. Rio which helps a lot in our inter ship in Saudi. To professor Dr. Yasuoka and all

CREST members for giving me the chance to form part of it. For profesor Atsushi Kawai

who has tough me everything of DS-CUDA and also its special support during hard times.

To professor Suwako who has driven me for a lot of new opportunities and various points of

view.

Special thanks to my friends Kadri and Waya, for their big support during this 3 years in

Japan. To all my lab members for their support in my Japanese language, specially Shiotani

Kun.

To all my family in Mexico for their unconditional support. To all my cousins for all their

experiences and support. To my mother Edith and father Raul who have been the pillars of

my education and support in all my professional career and life. To my brother Raul who

has been an inspiration to follow and my best friend in life.

Lastly, special thanks to MengMeng Wang for her special support.

VII

Contents

Abstract . III

Acknowledgements . V

List of Tables . IX

List of Figures . XI

1 Introduction 1

1.1 Research Purpose - Objective . 3

1.2 Thesis Organization . 5

2 CUDA 7

2.1 Compute Unified Device Architecture - CUDA 7

2.2 Programming Model . 9

2.2.1 Kernels . 9

2.2.2 Thread Management . 11

2.2.3 Memory . 11

2.3 CUDA for mobile architectures . 14

3 Mobile Devices 15

3.1 First mobile devices an its capabilities . 15

3.2 Post PC devices . 17

3.2.1 Main Capabilities . 17

3.3 Android Ecosystem . 18

3.3.1 Programming model . 18

3.3.2 OpenGL ES . 19

3.3.3 Native Development Kit . 19

4 DS-CUDA 21

4.1 Overview . 21

4.2 Package Description . 22

4.3 Usage . 23

4.3.1 Installation . 23

4.3.2 Configuration . 24

4.3.3 Sample Test . 25

4.4 Development Contributions for DS-CUDA . 26

4.4.1 Enabling Android Tablets . 27

VIII

4.4.2 Using Native Development Kit for Android 31

4.4.3 Makefile script for DS-CUDA SDK . 35

4.4.4 Github repository for DS-CUDA . 36

5 Claret,Molecular Dynamics visualization software 39

5.1 General Process of MD simulation . 39

5.2 Claret overview . 41

5.3 Technical Specifications . 43

5.3.1 Force calculation . 44

5.4 Versions . 44

5.4.1 Claret V 0.11 . 45

5.4.2 Claret V 0.53 . 45

5.4.3 Claret V 1.0 . 46

5.5 Android Port . 47

5.5.1 Visualization using OpenGL ES 1.1 48

5.5.2 Enabling DS-CUDA for force computation 51

6 Evaluation of Claret over different systems 55

6.1 System architecture . 55

6.2 Bandwidth performance over different mediums 57

6.3 Claret performance model . 60

7 Conclusion 69

7.1 Future Work . 70

References 71

IX

List of Figures

1.1 Prototype of Mobile-HPC app 1. Galaxy simulation. 4

1.2 Prototype of Mobile-HPC app 2. Molecular Dynamics. 4

2.1 Nvcc complete compilation trajectory. 10

2.2 Threads organization inside of CUDA architecture. 12

2.3 Organization of CUDA memory. 13

3.1 Martin Cooper photographed in 2007 with his 1973 hand-held mobile phone

prototype. 16

3.2 Palm model TX. 16

3.3 Various Post PC devices. 17

3.4 Android programming model architecture. 19

4.1 Prospect of a typical DS-CUDA system. 22

4.2 Contents of DS-CUDA package. 23

4.3 Example of a DS-CUDA system inside of Narumi’s lab. 24

4.4 Correct execution output from a DS-CUDA server. 25

4.5 Correct execution output from a DS-CUDA client. 26

4.6 System prototype to use DS-CUDA on Tablets. 27

4.7 Output of dscudacpp preprocessor. 28

4.8 Creation of client static library for ARM architecture. 28

4.9 Creation DS-CUDA executable for ARM architecture. 29

4.10 Copy DS-CUDA executable to tablet. 29

4.11 DS-CUDA executed on Android terminal emulator. 30

4.12 Constitution of DS-CUDA client library version 1.3.2. RPC based. 31

4.13 Constitution of DS-CUDA client library version 1.5.2. TCP socket based. . . 32

4.14 Bandwidth sample output. Tablet performing memory transfer to the remote

GPU using DS-CUDA. 34

4.15 Makefile script algorithm for DS-CUDA SDK. 36

4.16 DS-CUDA SDK generated with our makefile script. 37

5.1 General algorithm flow of a molecular dynamic simulation. 40

5.2 Claret simulator, screen-shot. 41

5.3 Claret simulator V 0.11 . 45

5.4 Claret simulator V 0.53 . 46

XI

5.5 Claret simulator V 1.0 . 47

5.6 Android application life cycle. 49

5.7 Sphere structure mapped by triangle primitives. 50

5.8 First claret version on Android tablet. 51

5.9 Font rendering using textures and .ttf file. 51

5.10 Output of claret for Android. Last version. 53

6.1 System components overview. 56

6.2 Jetson K1 development kit. 57

6.3 Total performance of cudaMemcpy over different mediums. 59

6.4 Total claret performance on Alienware - Model vs Simulation 62

6.5 Total claret performance on Jetson K1 - Model vs Simulation 63

6.6 Total claret performance on SHIELD - Model vs Simulation 63

6.7 Percentage of each process on claret performance - Alienware. 64

6.8 Percentage of each process on claret performance - Jetson K1. 65

6.9 Percentage of each process on claret performance - SHIELD. 65

6.10 Real time claret performance on Mobile Devices. 66

6.11 Force computation of claret on Mobile Devices. Accelerator GPU. 66

6.12 Force computation of claret using CPU only. 67

XII

List of Tables

1.1 Cost development for specialized hardware accelerators. 2

2.1 First CUDA capable GPUs and its specifications. 8

2.2 Main characteristics of CUDA memory. W/R = Reading and Writing. R =

Read only. 12

5.1 List of keyboard actions inside of Claret . 42

5.2 Parameters of Tosi-Fumi potential. B = 3.15Å−1 44

5.3 Technical specifications of Claret version for PC. 48

5.4 Differences between the usage of OpenGL / OpenGL ES over claret. 48

6.1 Specifications of each component of the system. 56

6.2 Bandwidth performance between different mediums in MBytes. Package size

from 1,024 bytes to 262,124 bytes. 58

6.3 Bandwidth performance between different mediums in MBytes. Package size

from 524,288 bytes to 268,435,456 bytes. 58

6.4 Memory latency. 59

6.5 Time per particle for each process on claret on different systems. 61

6.6 Model and simulations results of claret performance. 62

XIII

1

Introduction

High Performance Computing is a field that has been evolved through the years in the way it

is applied (Software), how it is implemented (Hardware) and how we used it. In the beginning

with first big computers (ancestor of the super computers) such as the Electronic Numerical

Integrator Computer (ENIAC) and the Universal Automatic Computer (UNIVAC) a whole

room of a building was need it to fit this only 1K Floating Operation per Second (FLOPS).

The applications fot his kind of machines where mainly for military purposes. One big ad-

vancement on the reduction of this big machines was the introduction of the TTL technology

at the end of the 70’s. Companies like Intel, ARM, Zilog, IBM and Motorola between the

most famous at that time, started the development of micro processors for what will become

the personal computing. Clusters and mainframes where build with these technology pro-

cessors but there was a major difficulty in the programming, communication between nodes

and the algorithm implementation. There has been the development as well of accelera-

tors which are dedicated for special purposes such as molecular dynamics. These specialized

hardware presents a highly parallel architecture and multi-core implementation such as the

MD-GRAPE [1], Anton [2], ATOMS [3], FASTRUN [4] and C SX600 [5]. However, the de-

velopment of these specialized hardware, as shown in Table 1.1, is really high considering the

small scope range of their applications.

The Graphics Processor Unit (GPU) is another specialized hardware which also presents

a parallel architecture design. With the advent of the graphical operating systems, the need

for rendering pixels and presents into a display has been increased, and the device which

encourage this task has been the GPU. Due to its primitive operations, this device is presents

next characteristics:

• Low cost (Compared to other specialized hardware).

• High parallelism.

1

Chapter 1 Introduction

Accelerator Manufacture Estimate cost per node (USD)

CX600 ClearSpeed ˜ $10,00
MDGRAPE-3 Riken ˜ $9,000,000
ATOMS AT&T Bell ˜ $186,000 (1990)
FASTRUN Colombia University ˜ $17,000 (1989)
GPU NVIDIA / ATI ˜ $200-800

Table 1.1: Cost development for specialized hardware accelerators.

• Optimized for Floating point calculation.

• Massively programmable processors.

It was in the 70’s decade when machines like Ikonas [6], the Pixel Machine [7] and Pixel

Planes 5 [8] used the GPU to compute something more than pixels. Here, the General

Purpose on Graphics Processing Unit (GPGPU) was born. In the same way as with the first

parallel computers, managing and programing these devices for another purpose wasn’t an

easy task due to the buffer manipulation and other shaders which requires enough knowledge

of the programming language pipeline such as OpenGL or Direct3D. Nonetheless, NVIDIA

a graphic card company decided to invest in this field, creating the Compute Unified Device

Architecture (CUDA) in 2006. CUDA is an architecture and programming framework that

enables dramatic increases in computing performance by and easily development on GPUs.

Since then, CUDA has successfully accelerated applications in many fields:

• Bio-informatics.

• Computational chemistry.

• Computational fluid dynamics.

• Computational structural mechanics.

• Data science.

• Defence.

• Computational finance.

• Imaging and Computer vision.

• Weather and climate.

• Medical imaging.

Also, some of the top of super computers, in the list of TOP500 [21] are equipped with

GPUs as accelerators. In order to handle this tumultuous conglomerate of GPUs in cloud

2

Section 1.1 Research Purpose - Objective

environment some HPC frameworks has been developed such as Distributed-Shared CUDA.

This framework helps to solve the major difficulties in programming multi-node heterogeneous

computers virtualizing GPUs on a distributed network as if they where attached to a single

node. In this sense, using a remote GPU from another device which is not equipped with one

accelerator of this kind is a feasible capability of DS-CUDA.

On another scenario, mobile devices are becoming primary devices for various of our main

activities such as reading email, taking pictures, playing games, using social networks and

also creating our own content. Since the appearance of the “smart-phone” and tablet devices,

the effort to integrate many sensors into a mobile device has lead new kind of applications

and new services development. New paths to interact with data and also to represent this

information to the user. Efforts to create new contents has lead a numerous variety of research

topics such as visualization data, virtual reality, health based applications, between others [9]

[10] [11] [12] & [13]. However, due to its mobile nature, these devices are equipped with low

computation power processors such as ARM and not yet programmable GPUs. Undoubtedly,

next generation of mobile device applications will will require a lot of computational power.

We proposed to merge the High Performance Computing applications with the mobile

device in this research. Through DS-CUDA framework, utilize remotely CUDA capable GPU

on the tablet to run an N-body simulation. An study about performance will be presented

as well.

1.1 Research Purpose - Objective

The main purpose of this research is to approach high performance computing applications

for mobile devices. These touching screen devices hold a new way to dive into the information

presented to the user. First applications prototyped by the author were galaxy simulation or

molecular dynamics, Figures 1.1 & 1.2 respectively, on Tablet device. However, to reach this

goal an accelerator is needed due to the low power precessing of the mobile devices. Utilizing

DS-CUDA framework seems to be a feasible solution since its open source nature and the

ability to use remotely a GPU from our local network.

Thus, 3 main objectives are summarized in this work:

First

DS-CUDA compatible with Android. In order to use remotely a GPU from our local

network inside of Android tablet device we need to be able to run client libraries and

generate proper DS-CUDA stubs for Android. Two approaches are presented: Using a

terminal emulator and through the Java Native Development kit.

Second

Create an HPC application for Android. To test the performance of DS-CUDA a

3

Chapter 1 Introduction

Figure 1.1: Prototype of Mobile-HPC app 1. Galaxy simulation.

Figure 1.2: Prototype of Mobile-HPC app 2. Molecular Dynamics.

4

Section 1.2 Thesis Organization

molecular dynamics simulation is implemented using OpenGL ES.

Third

Analyse the performance of the application. Modelling all the main process and com-

munication through the simulation and identifying the bottlenecks.

1.2 Thesis Organization

The present work is divided into 7 Chapters. Chapter 1 introduces all the background

about the General Purpose computing using GPUs, as well as the importance of the mobile

devices and its unique characteristics. Chapter 2 is about CUDA, its programming model and

capabilities. Also some introduction for mobile architectures is mentioned. Chapter 3 talks

about the mobile devices and its evolution, the capabilities and applications. A description of

Android operating system is also included. In Chapter 4 we go through DS-CUDA framework,

its overview and usage. Also, here we mentioned a contribution that we made as consequence

of this research. Chapter 5 is about “claret” molecular dynamics simulation software, its

main capabilities and versions. The description of the port for Android is detailed here.

The evaluation of the performance of claret is remarked in Chapter 6, as well as the system

architecture prepared for the test evaluation. Last Chapter 7 some remarks and conclusion

are listed.

5

2

CUDA

The graphics cards are designed to render high-quality 3D textures in real time. Due to the

large competitive market in this range of devices, the Graphic Processing Unit (GPU) has

become a powerful hardware for computing comparatively for low Cost. Interestingly, this

hardware become able to compute any kind of data rather than only pixels inside of shaders.

This new paradigm has its origins based on the General Purpose Computing on Graphics

Processing Units (GPGPU), particularly known for their great programming difficulty due

to the high level of knowledge in the graphics pipeline.

In recent years, scientist and developers have started using GPU as an accelerator for

their algorithms where they can get benefit of thousands of threads of this device.

2.1 Compute Unified Device Architecture - CUDA

CUDA is a computing architecture and framework developed by NVIDIA, a graphic card

company, with the main purpose of facilitate the parallel programming of GPUs. CUDA

allow developers to get immerse into the great power that the GPU brings with its many

cores and memory hierarchy. Before, graphics cards were only conceived in the high end

multimedia, media design and games sector, but nowadays CUDA allows GPU to work in

another kind of fields:

• Science

• Engineering

• Economy

High level of knowledge of the graphics pipeline1 is not needed,and only the knowledge of

C language is required.

1Is defined as the process or consecutive subroutines that are required to deploy graphics generated by an
output device.

7

Chapter 2 CUDA

Model Computing
Capability

Multiprocessors CUDA cores

GeForce GTX 560 Ti 2.1 8 384

GeForce GTX 460 2.1 7 336

GeForce GTX 470M 2.1 6 288

GeForce GTS 450, GTX
460M 2.1 4 192

GeForce GT 445M 2.1 3 144

GeForce GT 430, GT
440, GT 435M, GT
425M, GT 420M

2.1 2 96

GeForce GT 520, GT
415M 2.1 1 48

GeForce GTX 580 2.0 16 512

GeForce GTX 570,
GTX 480 2.0 15 480

GeForce GT 470 2.0 14 448

GeForce GTX 465,
GTX 480M 2.0 11 352

GeForce 295 1.3 2x30 2x240

GeForce GTX 285,
GTX 280, GTX 275 1.3 30 240

GeForce GTX 260 1.3 24 192

GeForce 9800 GX2 1.1 2x16 2x128

GeForce GTS 250, GTS
150, 9800 GTX, 9800
GTX+, 8800 GTS 512,
GTX 285M, GTX 280M

1.1 16 128

GeForce 8800 Ultra,
8800 GTX 1.0 16 128

GeForce 9800 GT, 8800
GT 1.1 14 112

Table 2.1: First CUDA capable GPUs and its specifications.

It wasn’t until five years later of the presentation of GeForce2 3 that the general purpose

computing was ready for its first steps. In November of 2006, NVIDIA introduced to the world

the first CUDA capable GPU GeForce 8800 GTX. This DirectX 10 capable GPU bring the

first speed up on science and start the revolution of GPGPU. Since then, NVIDIA continues

to develop and release new CUDA capable graphic cards. Table 2.1 shows some of the first

CUDA capable devices.

Since NVIDIA wanted to create a whole new family of graphics processing unit for general

purpose computing the Arithmetic Logic Unit (ALU) were designed under the standard IEEE

754-1985 [18] for single floating point precision, as well as including many functions not

oriented to graphics rendering. Also they implemented a whole new memory hierarchy inside

2One of the most famous NVIDIA’s GPU branch, dedicated to gamers and high end multimedia PC.

8

Section 2.2 Programming Model

of the device composed up to 5 levels. All of this and other great capabilities are included in

CUDA allowing GPU’s to achieve general purpose computing and also graphics rendering.

2.2 Programming Model

A structure of a CUDA program is grouped in one or more phases that are executed in the

host (CPU) or inside of the device (GPU). The parts inside of the code which shows a lot of

parallelism are executed inside of the device. In the other hand, the serial parts are running

in the host side. Thus, a CUDA program is a combination of code execution inside of host

and device. NVIDIA provides an special based C compiler called nvcc which separates and

process the different code for each device, as the Figure3 2.1 shows. The code that belongs

to the host is ANSI C standard, process by normal C language compilers and runs in an

“commercial” CPU. The code executed in the device is processed in some different ANSI C

standard that extend key-words for parallel functions called kernels and its associated data

structures.

2.2.1 Kernels

The called kernels are subroutines executed inside of the GPU which in turn call a mas-

sive number of threads. Each GPU is composed for many Multiprocessors (MP) which also

contains tons of threads. Depending of the compute capability, the developer may launch

up to 1024 threads per MP or more. In this way, one thread does not process the same

information at the same time since each one have a different “Index”. This special identifier

tells the thread what to do with different data and accessing different memory region. Next,

we provided a very easy sample of a kernel.

1

2 // S t rucu t re o f a Kernel

3 g l o b a l void MiKernel (f l o a t ∗ x , f l o a t ∗ v , f l o a t cons)

4 {

5 in t i = threadIdx . x ;

6 x [i] = x [i] + v [i] ∗ cons ;

7 }

8

9

10

11 i n t main ()

12 {

3Image courtesy of http://developer.nvidia.com//nvidia-gpu-computing-documentation//

9

Chapter 2 CUDA

fatbin

ptxas

nvopencc

cpp

.gpu

.ptx

.cubin or ptx text

.fatbin (embedded fat code data structure)

.cu.c

-Xptxas

options

cpp

cudafe

cpp

cudafe

.cu

.gpu

cpp

.c

host code

.gpu

ptxas

nvopencc

.ptx

-Xopencc

options

...

!lehash

Application independent

device code name

.fatbin (external device code repository)

-ext,-int,-dir

options

-arch

option

-code

option

Figure 2.1: Nvcc complete compilation trajectory.

10

Section 2.2 Programming Model

13 //Kernel c a l l from the Host

14 MiKernel<<<1,N>>>(X,V, Cons) ;

15 }

As we can see in the kernel sample, an especial identifier of it is the reserve word global

in which the developer can specify the number of threads to be launched in side of the

GPU. This is done through the identifier <<<....>>>. The special index for each thread is

reachable by one built-in variable called threadIdx. This patern operates in the paradigm

Single Instruction, Multiple Data (SIMD) which is used typically on the GPU, contrary to

the CPU which uses Single Instruction, Single Data (SISD). Also, the kernel allows sentences

like “if-then-else”. NVIDIA has developed the concept of Single Instruction, Multiple Thread

(SIMT). One example of this new concept is executing code depending if the index of a thread

is odd or even. However, to get the best inside of a GPU we have to take care of details such

as the called warp. This means that if each MP contains 8 processors only 32 threads will be

executed at the same time, then the developer should be able to consider conflict of memory

between the access of the indexes.

2.2.2 Thread Management

Conveniently, the variable threadIdx is a 3 component vector that can identify threads by

an Unidimensional (1D), Bi-dimensional (2D) or Tree-dimensional (3D) arrangement.

• threadIdx.x, threadIdx.y y threadIdx.z

This bunch of threads get grouped into blocks, which can be collapsed by 1D, 2D and 3D

index variable blockIdx.

• blockIdx.x , blockIdx.y y blockIdx.z

This naturally offers a way to invoke elements in cross connection such as vector, matrix

or volume. Blocks are organized into a grid, as is shown in Figure 2.2.

There is a limit of threads that the coder can call per block. In actual GPUs the limit is

over 1024 threads, this is due to special memory segment shared for all threads inside of the

same MP and the architecture of the GPU itself. Nevertheless, a kernel is able to execute

a multiple amount of blocks per time. Thus, the total number of threads is equal to the

number of threads per block times the number of blocks.

2.2.3 Memory

NVIDIA’s GPUs are equipped with 5 different memory, each of one with different charac-

teristics and functionality. Its crucial its understanding in the path of seraching the best

11

Chapter 2 CUDA

Figure 2.2: Threads organization inside of CUDA architecture.

Memory Global Constant Texture Shared Local

Access W/R R R W/R W/R
Size More than 100 MB 64 KB More than 100 MB 16 KB More than 100 MB
Scope Application Application Application Per Block Per Thread

Table 2.2: Main characteristics of CUDA memory. W/R = Reading and Writing. R = Read
only.

performance on the GPGPU. Table 2.2 refers to main characteristics of this memory spaces.

Next we will a brief description and usage of this 5 different memory spaces.

Global Memory

This is the main memory zone that a kernel is able to write and read data. Dynamic memory

allocation on the fly is not allowed, it must be allocated before the application starts. This

memory is variable according to the GPU model and nowadays goes beyond the 1GB. During

the kernel call, this memory space is persistent.

Constant Memory

The constant memory is very small, reaching only 16KB and “read” only. This space is

persistent along the kernel calls. The host can load any kind of data inside of this space of

memory. Read only refers that inside of a kernel this space can not be modified by the device.

Texture Memory

This memory space is quick and read only. Specialized to load mapping and modelling

elements in 2D and 3D. CUDA offers to the ability to communicate with graphics pipelines

12

Section 2.2 Programming Model

Figure 2.3: Organization of CUDA memory.

such as OpenGL and Direct X in order to save time reaching objects in space memory,

thereby, the rendering time is faster.

Shared Memory

The shared memory is small space, about 16KB which does not resides inside of the main

memory and it is not persistent along the kernel’s call. The host can not load any data,

however, when the host call the kernel, this can specify up to 16KB read and write zone

for all the threads within a block. In this way, all the threads inside of a block share this

memory space. After the last execution of the last thread, this space is unallocated. Using

this memory space is faster than the global memory for the same threads within a block.

Local Memory

Local memory has similar functions to global memory, only the life time and the variable

scope are limited to one single thread. The main reason is as follows: If every MP can run up

to 1024 threads concurrently and only 163844 register, each thread can only use 16 of them

with full load. If more different variables are need at the same time, these will be allocated in

the local memory. Unfortunately, this choice is left for the compiler in order to save registers.

As the Figure 2.3 shows, CUDA architecture has various different types of memory, which

can be not so easy so manage but that the developer can used according to his needs. This

may impact directly to the performance of the final CUDA application.

4The exact number of register of GPU may vary with a different model version.

13

Chapter 2 CUDA

2.3 CUDA for mobile architectures

With the increase usage of smart phones and tablets, new processors architectures were

developed such as ARM architecture, in order to follow the special computing and power

demand that these new devices requires for daily task. NVIDIA’s company, as graphics

accelerator hardware pioneer enter to this market with the introduction of a new branch of

mobile processors called Tegra. This system on chip (SoC) is aimed for mobile devices such as

smartphones, digital cameras, personal digital assistants and internet mobile devices. Trough

many iterations of this new SoC, Tegra APX, Tegra 2, 3 and 4 this new branch of NVIDIA’s

processor took a place in mobile market. However, all of these chips are not CUDA capable.

It was on April 2014 when NVIDIA finally released one mobile chip capable of CUDA

architecture, Tegra K1. This new ARM cortex general purpose 32 bit processor includes a

general-purpose GPU. Also is able to run OpenGL ES 3.1, CUDA 6.5 and OpenGL 4.4. The

company claims that it outperforms both Xbox 360 and PS3 whilst consuming significantly

less power.

Some of the motivations to use this new chip are solutions for compute-intensive embedded

projects like autonomous robotic systems, advance driver assistance systems, mobile medical

imaging and intelligent video analytics.

14

3

Mobile Devices

The human has the basic need of communication, and since the technology appears, we

haven’t stopped searching for better, new, crazy and innovative ways of transmit information

between each other. Commodity is also an strong point when we think about technology

development, thus mobility. Maybe one of the most important events on the development of

the human communication history is the invention of the telephone which allow the globe to

become a vast network of electricity-based speaking people. With the arrived of transistor

and micro electronic components, the compute devices started to become smaller and smaller,

and with the integration of the radio wave technology, the first clues of mobile devices start to

appear. Changing the way we communicate, where and how, the mobile phone is maybe one

of the most important devices nowadays, which changes and creates industries and businesses.

Not only the usage of mobile phones but also the Personal Digital Assistant (PDA), tablets,

music players, watches, video game portable devices, and GPS are now part of our daily life,

and sometimes essentials.

3.1 First mobile devices an its capabilities

The radio telephony used in the second world war is the predecessor of the existing mobile

phones. At the same time, telephones on auto-mobiles were possible however not so famous

and common to use. AT&T company was the first in commercialized a Mobile Service

Telephone in 1949. In 1973 Martin Cooper from Motorola introduce the first mobile called

“the brick” [28] as is shown1 in Figure 3.1. It was capable of 60 minutes of talking however

taking 10 hours to get full charge.

Another mobile device, which impact over the society and the way we live was the Sony’s

Walkman. In 1979 the first portable cassette tape was on sale for $150 dollars [29]. Power

consumption was low requiring only either one AA battery or one gumstick-type rechargeable.

1Images courtesy of “2007Computex e21-MartinCooper” by 2007Computex-e21Forum-MartinCooper.jpg

15

Chapter 3 Mobile Devices

Figure 3.1: Martin Cooper photographed in 2007 with his 1973 hand-held mobile phone
prototype.

Figure 3.2: Palm model TX.

This small device, change a way in which used to enjyo usic in a travel, on the public transport

and also when we do fitness activities.

The introduction of PDAs or personal data assistant were the first steps of what we know

common today as a tablet or handheld PC. the calle dPDA has an electronic visual display,

including a web browser, capable of playing audio as a portable media player. Most of PDAs

have access to internet, intra-nets or extra-nets via Wi-Fi and most importantly utilizes touch

technology. One example is the Palm TX which is shown2 in Figure 3.3.

Perhaps another big mobile which made a huge impact in the way of its application is

the Nintendo GameBoy. Released in Japan in 1989, this is one of the first mobile consoles to

has a tremendous success. Holding the purpose of playing video games only, this 15-30 hours

portable game console was powered by 4 AA batteries. It was included in the system a CPU

custom 8 bit processor at 4.19 MHz.

As we can denote from the devices mentioned before, they were the first on its category,

moving forward the technology and evolving the way of communication. Strongly, we can

observe that the functionality was limited to one main function, the battery life was mention

2Images courtesy of Palm T—X Photographer: Stefano Palazzo Used Camera: Kodak Z740

16

Section 3.2 Post PC devices

Figure 3.3: Various Post PC devices.

to have a period of hours and the interactivity with the user was tied.

3.2 Post PC devices

During the end of the 90’s and the first half of new millennium, the cellular phone was

consider the gadget of the moment. Accompanied with the first PDAs and the popularity of

Internet, this mobile devices were doted all ready with the first mobile OS, such as Palm OS,

Black Berry OS, Windows CE/Pcoket PC or Simbian. These small apparatus, as the ones

shown3 in the Figure 3.3, were developed to deliver more than one main function to the user,

making them more intuitively and dynamic, thus more complex in design and powerful. But

it wasn’t until 2007 when Apple introduce the iPhone that the real-smart phone, one of the

most important Post PC devices, came along to the scenario to define a new way to interact

with mobile computers. Since then, multiple devices such as Tablets, E-Readers, smart-

watches and others, make usage of new technologies to increase the capabilities, functionality,

computation performance, interactivity and services which provides a unique experience to

the users.

3.2.1 Main Capabilities

Possibly, the greatest impact of the Post PC devices over the first mobile devices are the bunch

of capabilities inside of them. In the beginning, mobility was only focused on one main task

due to the technology frontier and scarce resources. However, nowadays the experience is

much more complete within a tablet or smart phone. Some of these new features are:

• Mobility.

• Connectivity.

3Images Courtesy of Courtesy of www.isanweb.es

17

Chapter 3 Mobile Devices

• Limited Memory.

• Portability.

• Huge Ecosystem.

• Low power consumption.

• Touch screen capabilities

• Low processing (ARM processors)

With these various capabilities, the applications for a mobile devices are more wide rich in

experience and contents. The search for crating new contents has lead a numerous variety of

research topics such as virtual reality, visualization data, health based applications, games and

others [9] [10] [11] [12] & [13]. As well as this dissertation will approach the high performance

computing on mobile devices through remote GPGPU.

3.3 Android Ecosystem

Although, recently there are more than one operating system for mobile devices such as

iOS for apple products, Windows mobile, WebOS and Ubuntu touch, the author decided to

use Android due to its widely adoption through the mobile device community, Linux based

architecture, more compatibility through wide range of devices and its ease of application

implementation. Android is was developed by Android Inc. which was absorbed by Google

in 2005. Since then Android has become one the most emblematic products of this com-

pany. Android since its first appearance has many iterations versions which are named with

“desserts”, such as 1.6 Donut, 2.0 Eclair, 2.2 Froyo, 2.3 Gingerbread, 3.0 Honeycomb, 4.0 Ice

cream sandwich, 4.1 Jelly bean, 4.4 Kitkat and finally the most recent 5.0 Lollipop.

3.3.1 Programming model

Android has a Linux kernel on its core, and on the top of this there are the middleware,

libraries and APIs most based on C language. Also, this mobile OS contain an application

framework which includes Java-Compatible bytecode. The Dalvik virtual machine is in charge

of generate dex-code which is translated directly from Java bytecode. This virtual machine

is optimized to use few memory which is one of the “commons” inside of mobile devices. It is

designed to execute various instances. In the Figure 3.4 a general view of the programming

model4 is displayed.

4Image courtesy of “Android-System-Architecture” by Smieh - Anatomy Physiology of an Android.

18

Section 3.3 Android Ecosystem

Figure 3.4: Android programming model architecture.

3.3.2 OpenGL ES

OpenGL is the one the most widely known computer graphics rendering plication program-

ming interface developed by Krhonos Group. OpenGL ES for embedded systems supports the

generation of 2D and 3D graphics for smart-phones, tablets, video-game consoles and PDAs.

Ti has been released various major versions such as 1.0, 1.1, 2.0 and 3.0. The similarities

between the normal OpenGL API are perceptible but not identical. One of the major disad-

vantages for porting between these two API is that GLUT 5 is not included. Also OpenGL

ES comes with its own shading language. Android supports OpenGL ES since the Android

1.6 version on its different major versions.

3.3.3 Native Development Kit

The called NDK toolkit allows running C and C++ code inside of Android device. There

are 2 good reasons why is practical to use C instead of Java language. First, the execution

of C code is done natively inside of the ARM processor, intended for such applications with

CPU-intensive workload such as game engines, signal processing, physics simulation and so

on. Second, to use libraries which are already exist in C language code and also the usage of

5OpenGL Utility Toolkit facilitate the window managing, keyboard and mouse input functions and others.

19

Chapter 3 Mobile Devices

third party code. NDK set of tool-chains that can generate native ARM binaries on Linux,

OS X and windows platforms. It also provides a set of system headers for stable APIs:

• libc.

• limm.

• JNI interfaces.

• libz for compression.

• liblog for Android logging.

• OpenGL ES 1.1 and 2.0.

• libjnigraphics.

• Minimal set of C++.

• OpenSL ES for native audio.

• APIS for Android native applications.

Basically NDK uses a set of ARM compilers to create static and shared libraries which are

loaded by the Dalvik virtual machine. This libraries can be created by specifying correctly

the Android.mk and Application.mk files. Under the folder called “jni” inside of a Android

project, these two files are similar to “make” based type archives. Inside of them we can

specify paths, compiler flags, directives, libraries and other C like options. Finally, a dynamic

library is created which is loaded in Java code through System.Load() function. NDK also

provides a set of sample programs (SDK) which describes how to create a shared library and

included inside of your Java Code.

20

4

DS-CUDA

Super computers and clusters inside of the High Performance Computing (HPC) field are

nowadays equipped with several hundreds of thousand cores. Due to this large topology of

CPU connections, communication among the cores tends to be the bottle neck rather than

the computation itself. Moreover, as we explained in chapter 2, with the arising of GPGPU

and its good welcoming from CUDA’s hand, more and more scientific community integrated

this devices to its HPC cluster as accelerators. Some of the top machines in the TOP500

[21] list are also equipped with GPUs. However, a limiting point is the ability to allocate

a few GPUs inside of each PC. Therefore, the scenario to implement an algorithm inside

of this massively parallel system may be that the developer applies at least three common

HPC frameworks: MPI,OpenMP and CUDA. Even a complicated program using all three

frameworks may fail to take full advantage of the system performance. In addition, in some

cases we have a machine which is not equipped with a GPU, and using them from our local

network may benefit educational and demonstrative purposes.

To solve this kind of difficulties, HPC frameworks have arisen such as Distributed-Shared

CUDA (DS-CUDA).

4.1 Overview

DS-CUDA is a middleware that allows to manage NVIDIA’s GPUs on a distributed network.

A single client node and various server nodes compose one DS-CUDA system, as is shown in

Figure 4.1. The server nodes have one or more CUDA capable GPUs that are handled by

server processes. An application on the client side can use these parallel devices to process

data without having a physical GPU. The program sees all GPUs contained into a cluster

as if they were actually attached to the client node. Therefore, DS-CUDA is a kind of

GPU-virtualization tool at source code level.

When the client calls native CUDA API, the DS-CUDA preprocessor handles the correct

21

Chapter 4 DS-CUDA

!"#$%&

!"#$%&'()*$

()*$'+

,-.'+/$01$0'+

/$01$0'2 ,-.'+

()*$'2

,-.'+/$01$0'+

/$01$0'2 ,-.'+

/$01$0'()*$

(
$
&3
)
04
'5
%
&$
06
)
%
%
$
6
&#
)
%

Figure 4.1: Prospect of a typical DS-CUDA system.

wrapper function, which communicates with the server nodes through an InfiniBand (IB-

Verb) or TCP socket. The wrapper function sends the proper arguments and data to the

server nodes, each of which process this data calling the actual native CUDA API. A detailed

description of its implementation is in another paper [22] and also application [23].

4.2 Package Description

DS-CUDA is presented as an Open Source package that can be obtained from http://narumi.cs.

uec.ac.jp/dscuda/ as a .tar package. Contents of this package are listed in Figure 4.2. As

the image shows, the contents are all binaries including the dscudacpp which is a prepro-

cessor who handles the kernels calls inside of the client side. A brief documentation is also

included, such as a quick start.However, more detailed explanation is a viable in Japanese

at the moment. Some examples are also part of DS-CUDA package, including bandwidth

program which measure performance of cudaMemcpy function1. Claret sample which shows

a molecular dynamics simulation between Na Cl particles. Direct sample which copy memory

between GPU’s using peer to peer function. Matrix multiplication program and the last one

which shows a basic computation of adding two numbers such as a + b = c. Nevertheless,

1This function copy memory between the host (CPU) and the device (GPU).

22

Section 4.3 Usage

Figure 4.2: Contents of DS-CUDA package.

DS-CUDA framework continues in development and it’s keeping adding more contents and

capabilities which may be different as the ones mentioned here.

4.3 Usage

As we were mentioned before, DS-CUDA was born as a high performance computing frame-

work for NVIDIA’s GPUs. This means, that clusters and supercomputers were the main

target of this new technology. One more real example is the one shown in Figure 4.3. In this

system configuration we can appreciate one client machine without any physical GPU. Also,

various server nodes with up to 2 GPU per node.

DS-CUDA runs mainly over Linux based operating systems. Main developers and testers

have used distributions such as Knoppix 7.2, Ubuntu 12.04, Ubuntu 14.04 and Fedora 12 to

test the package. DS-CUDA works properly with x86 32-bit and 64 bit architectures. One

important thing to consider is the communication medium between client and server, such

as Inifni-Band verbs or TCP socket. For the first one, you may need the proper libraries

and also the device and infrastructure to interconnect your machines. To use TCP socket,

Ethernet cable or Wi-fi is used, which is the most common option to test DS-CUDA.

4.3.1 Installation

In order to run DS-CUDA, make sure that your machine includes the following packages and

tools:

• CUDA Toolkit & SDK (Tested with 4.1 5.5 and 6.0)

23

Chapter 4 DS-CUDA

LAN / WAN Network.

Client Node

Server Node 1

Server Node 2

Server Node 8

Gateway

Gateway

knoppix

CUDA

Figure 4.3: Example of a DS-CUDA system inside of Narumi’s lab.

• GNU C++ compiler (Tested with version 4.5 and above)

• Ruby (Tested with version 1.8 and above)

• OFED (Tested with version 1.5) – for Infini-Band support.

Once the package is downloaded and extracted, go directly to $dscudapath/src. Inside

of this directory all the source code is included and through the make command you can

generate binaries and libraries for client and server, such as :

• $dscudapath/bin/dscudasvr →DS-CUDA server executable.

• $dscudapath/lib/libdscuda rpc.a →DS-CUDA client library (TCP socket).

• $dscudapath/lib/libdscuda ibv.a →DS-CUDA client library (IB verb).

• $dscudapath/lib/libcudart.so →Dummy CUDA runtime library.

4.3.2 Configuration

The program running inside of a DS-CUDA client sees virtual devices that are real devices

allocated in the server. The mapping of the real virtual devices is given by an environment

variable2 DSCUDA SERVER. DS-CUDA framework manages and configures through environ-

mental variables. The ones of primary usage are listed bellow:

• DSCUDA PATH :Indicates the full path of the package location

2Environmental variables provide a way to influence software behaviour on Linux system. They are widely
used for customization and configuration.

24

Section 4.3 Usage

Figure 4.4: Correct execution output from a DS-CUDA server.

• DSCUDA WARNLEVEL :Configures the warning level. 2 is the default value, but can be

increased to 5 for debugging purposes.

• DSCUDA REMOTECALL :Indicates which kind of protocol is used between client and server.

• DSCUDA USEDAEMON :Selects the option to run a daemon which stay listening for client

request

• DSCUDA SERVER :Configures the server host-name or “ip” address.

A complete list of DS-CUDA environmental variables refer to Japanese documentation.

4.3.3 Sample Test

In this section we describe a real example of DS-CUDA system test as the one depicted on

Figure 4.3, using the vecadd sample listed in the samples of the package.

Server Side

Once inside of the main path $dscudapath/src, we can create the binary for the server.

In this scenario using socket protocol connection we compile dscudasvr. Once generated,

we need to set some minimal environmental variables such as: DSCUDA WARNLEVEL = 2 and

DSCUDA REMOTECALL = tcp. Done the mentioned above, we can lunch the program, obtaining

an output similar to the Figure 4.4.

On the output of the DS-CUDA server we can observe some useful details: warning level

execution, the communication protocol between server and client, number of real devices and

the listening port.

Client side

For client side, we have to perform two actions: 1. Generate a proper DS-CUDA library

supporting our connection protocol. 2. Compile our CUDA code using the DS-CUDA pre-

processor and generate the executable.

For the first stage, we need to generate libdscuda rpc.a which is inside of the main path

$dscudapath/src. Then we need to compile our CUDA source code with the preproces-

25

Chapter 4 DS-CUDA

Figure 4.5: Correct execution output from a DS-CUDA client.

sor dscudacpp, inside of the $dscudapath/bin path. This will generate our executable

which GPU code will run over the server side. Before the executable may be launched,

we need to specify some DS-CUDA environment variables as well:DSCUDA WARNLEVEL = 2,

DSCUDA REMOTECALL = tcp and DSCUDA SERVER = 192.168.0.205.

As we can observe in Figure 4.5, the GPU code is executed in one server machine addressed

by the ip number 192.168.0.205, which is equipped with one GPU.

4.4 Development Contributions for DS-CUDA

In order to bring the power of GPGPU to mobile devices, specifically over Android platform,

DS-CUDA was used as a medium to execute use remote GPU. We were able to adapt DS-

CUDA framework to run in Android through 2 methods: 1. Using a terminal emulator and

external ARM compiler. 2. Using NDK. As well, we develop a make file system based to

maintain the SDK provided in DS-CUDA package. Also we provide a GitHub3 support.

Next sections we explain in detail these contributions.

3Web based git repository hosting service.

26

Section 4.4 Development Contributions for DS-CUDA

DS-CUDA

Server

LAN Network.

Client Node

Server Node

Ehternet GiBitEthernet GiBit

Wireless

802.11n

Figure 4.6: System prototype to use DS-CUDA on Tablets.

4.4.1 Enabling Android Tablets

One of the motivations of this research was the idea of merging the world of mobility with

high performance computing. In order to create new applications which the author depicted

as the first idea when the whole process started, such as in Figures 1.1 & 1.2.

The purpose was connect the interactiveness and mobility capabilities of the tablet with

applications that require exhaustive computation. A example system is shown in Figure

4.6. One tablet device connected to a local network through Wi-Fi and a DS-CUDA server

equipped with one CUDA capable GPU interconnected to the same local network via Ethernet

cable.

Through terminal emulator

The first approach was using the terminal emulator. Inside of the huge Android app ecosys-

tem, there is a terminal emulator shell or bash like. Inside of this emulator you can execute

common Linux commands such as ifconfig, ./ and cd etc. Then, the basic idea was to compile

a basic example from DS-CUDA sample package using an external ARM compiler. Copy the

binary to the device and execute in terminal as a normal Linux based program. The full

steps are detailed next:

First

The scenario is depicted in figure 4.7. The sample.cu file contain the proper CUDA

code to add some numbers. This file is inserted to dscudaccp preprocessor. The output

is composed by several files: The sample.ptx correspond to low level like code inside of

27

Chapter 4 DS-CUDA

sample.cu dscudacpp

sample.ptx

tmp

samplerc.cpp

sample

x86

Figure 4.7: Output of dscudacpp preprocessor.

dscudaverb.c

libdscuda_rpc.a

dscudarpc_clnt.c

dscudarpc_xdr.c

dscudautil.c

libdscuda_rpc.c

arm-gnueabi-g++

Figure 4.8: Creation of client static library for ARM architecture.

the kernel wrriten in sample.cu. This is generated by nvcc compiler. The samplerc.cpp

which is a similar version of the original code but wrapping all the native CUDA

functions with the DS-CUDA proper ones. Last, the sample binary which is the final

executable for desktop machines.

Second

In order to be able to use the APIs from DS-CUDA on client side on the tablet, we

need to generate libdscuda rpc.a. This library includes all the wrapper functions to

communicate with the server and execute the CUDA code. We used an ARM compiler

provided by ARM GNU/Linux tool chain to generate object files and then collapse

these into the static library, as Figure 4.8

28

Section 4.4 Development Contributions for DS-CUDA

libdscuda_rpc.a

arm-gnueabi-g++

samplerc.cpp

sample

ARM

Figure 4.9: Creation DS-CUDA executable for ARM architecture.

sample

ARM

sample.ptx

Figure 4.10: Copy DS-CUDA executable to tablet.

Third

The samplerc.cpp code is compiled with the ARM compiler and it is integrated with

libdscuda rcp.a to create a final executable, Figure 4.9.

Fourth

Finally, two files are copied manually (Via SD card or USB) into the tablet, Figure

4.10. We access this path under the terminal emulator and execute the binary.

The executable will send a copy of the .ptx to the server, which includes the CUDA code

for the GPU. A final output from the tablet is pictured in Figure 4.11.

DS-CUDA was enabled by this method, and also the first trials of CUDA over Tablet

devices. However, there are some week points about it: Due to usage of terminal emulator,

displaying data is restricted only to text.If we require to implement an OpenGL app another

way should be found. The process for compiling and testing is complicated, thus become

impractically to develop. Copying and pasting the executable and .pxt code generate may

damage the SD card and USB bay due to connect and disconnect action. At this point, DS-

CUDA version 1.3.2 was using the Remote Procedure Call (RPC) library to interconnect the

29

Chapter 4 DS-CUDA

Figure 4.11: DS-CUDA executed on Android terminal emulator.

30

Section 4.4 Development Contributions for DS-CUDA

RPC

dscudarpc.x

dscudarpc_clnt.c dscudarpc.h dscudarpc_xdr.c

Libdscuda_rpc.a

dscudaverb.c dscudarpc_clnt.c dscudarpc_xdr.c dscudautil.c libdscuda_rpc.c

Figure 4.12: Constitution of DS-CUDA client library version 1.3.2. RPC based.

client and server over Ethernet protocol using sockets. With this method, none modifications

were made to compile libdscuda.a library. Nevertheless, NDK tool-kit is not capable of using

such libraries.

4.4.2 Using Native Development Kit for Android

As we saw in the section above, running DS-CUDA using the terminal emulator allow us to

use RPC libraries but limiting to develop shell console based application. One alternative to

solve this issue is using NDK which was detailed in 3. The Native Development kit allow to

use C code inside of the Java main based program on Android devices. The first trial was

to compile the libdscuda rpc.a static library within NDK, however as the contents inside of

the package shows, there is no support for RPC libraries inside of NDK. The client library

for DS-CUDA version 1.3.2 uses RPC to implement the wrapper functions corresponding to

the native CUDA API. A diagram of the contest are shown in Figure 4.12. The dscudarpc.x

prototypes all the wrapper functions on RPC language, then using rpcgen generate the proper

stubs for client, server, external data representation and headers in C language. The problem

to compile these files corresponding to RPC, such as dscudarpc clnt.c is that NDK do not

has some prototype values.

A new version of DS-CUDA is proposed, in which POSIX sockets were used instead of

RPC library. The POSIX socket API is a viable inside of NDK enabling the communication

with the external apps directly without calling into the Java layer. A socket is a connection

end-point that can be named and addressed in order to transmit data between applications

that are running either on the same machine or another machine on the network. Thus, the

31

Chapter 4 DS-CUDA

Libdscuda_tcp.a

dscudaverb.c sockutil.c dscudad.c dscudautil.c libdscuda_tcp.c

Figure 4.13: Constitution of DS-CUDA client library version 1.5.2. TCP socket based.

new version of client library for DS-CUDA 1.5.2 is shown in Figure 4.13.

The sockutil.c file implements the set up connection between client and server, the received

and sent message functions only using POSIX sockets. The prototype functions are shown

bellow:

1 s t r u c t sockaddr in setupSockaddr (uns igned in t ipaddr , i n t ippor t) ;

2 void sendMsgBySocket (i n t sock , char ∗msg) ;

3 void recvMsgBySocket (i n t sock , char ∗msg , i n t msgbuf s i ze) ;

The source code named libdscuda tcp.c implements the remote call which carries the

wrapper function to call native CUDA calls and send the proper data to the server side.

Basically the implementation of the wrapper functions are the same, only the medium which

are carried by is changed from RPC to TCP socket. The next step is to include the DS-

CUDA client static library inside of the Java code. Initially, the first test included all the

source code of the libdscuda tcp.a inside of the main project, lately we realized that every

time we want to use DS-CUDA on the tablet we have to copy all the code. Then, we created a

separated project in which only libdscuda tcp.a is generated. The sample of the Android.mk

and Application.mk are showed next:

1 ## Android .mk

2 ################Sta t i c Library l i b d s c u da t c p . a

3 LOCALPATH := $ (c a l l my−d i r)

4 in c lude $ (CLEAR VARS)

5

6 LOCALMODULE := dscuda tcp1 . 5 . 2

7

8 LOCAL CFLAGS := −O0 −g − f f a s t −math − f u n r o l l−l oop s −I . \

9 −I / usr / l o c a l /cuda/ in c lude \

10 −I / usr / l o c a l /cuda−4.1/NVIDIA GPU Computing SDK/C/common/ inc \

11 −I / usr / l o c a l /cuda/ samples /common/ inc −DTCPONLY=1

12 LOCAL SRC FILES := dscudaverb . cpp dscudaut i l . cpp \

13 s o c ku t i l . c l i b d s cuda t cp . cpp \

32

Section 4.4 Development Contributions for DS-CUDA

14 LOCAL LDLIBS := − l d l − l l o g

15 in c lude $ (BUILD STATIC LIBRARY)

16 ################Sta t i c Library DS−CUDA Routine

As we can observe, all the source code inside of Figure 4.13 is included inside of the

Android.mk. Some flags are also included, such as debugging, fast mathematics and unroll.

Some local libraries from the NDK are also called such as the log library.

1 ## App l i ca t i on .mk

2 APPMODULES := dscuda tcp1 . 5 . 2

3 APP ABI := armeabi

4 APPPLATFORM := android−18

5 APP STL := g n u s t l s t a t i c

6 APP GNUSTL FORCE CPP FEATURES := excep t i on s r t t i

7 APP OPTIM := debug

The Application.mk file configures the platform, type of C library to load, architec-

ture and some exceptions for the compiler to use at the time to generate the code. To

include the libdscuda tcp.a in another project just use the include command inside of the

Android.mk file, writing the full path where the static library is located. Include the project

as BUILD STATIC LIBRARY inside just above the compilation line where the main pre-

processed CUDA code is located. As a sample, we show a bandwidth sample program which

measures the memory transfer between the tablet and the remote GPU. Figure 4.14 shows

the output of this app.

The entire Android.mk code for the bandwidth app is showed below:

1 ################Sta t i c Library l i b d s c u da t c p . a

2 LIB LOCAL PATH := $ (c a l l my−d i r)

3 in c lude / usr / l o c a l /DSCUDA/dscudapkg1 . 5 . 2 / s r c /Android/ j n i /Android .mk

4 LOCALPATH := $ (LIB LOCAL PATH)

5 ################Sta t i c Library DS−CUDA Routine

6 in c lude $ (CLEAR VARS)

7

8 LOCALMODULE := bandwidth

9

10 LOCAL CFLAGS := −O0 −g −P − f f a s t −math − f u n r o l l−l oop s − f p e rm i s s i v e −I . \

11 −I / usr / l o c a l /cuda/ in c lude \

12 −I / usr / l o c a l /DSCUDA/dscudapkg1 . 5 . 2 / in c lude /common/ inc \

13 −I / usr / l o c a l /cuda/ samples /common/ inc −DTCPONLY=1

14

33

Chapter 4 DS-CUDA

Figure 4.14: Bandwidth sample output. Tablet performing memory transfer to the remote
GPU using DS-CUDA.

34

Section 4.4 Development Contributions for DS-CUDA

15 LOCAL SRC FILES := bandwidth . cpp

16 LOCAL STATIC LIBRARIES := dscuda tcp1 . 5 . 2

17 LOCAL LDLIBS := − l d l − l l o g

18 in c lude $ (BUILD STATIC LIBRARY)

19 ################Compile C lare t main program

20 in c lude $ (CLEAR VARS)

21

22 LOCALMODULE := bandwidthtest

23

24 LOCAL CFLAGS := −g −W −DANDROIDNDK −DDISABLE IMPORTGL

25 LOCAL SRC FILES := app−android . cpp

26

27 LOCAL STATIC LIBRARIES := bandwidth

28 LOCAL LDLIBS := − l d l − l l o g

29

30 in c lude $ (BUILD SHARED LIBRARY)

4.4.3 Makefile script for DS-CUDA SDK

DS-CUDA package provides some samples for the user to test and learn how to use this frame-

work. Various examples, as in Figure 4.2 is shown, such as memory transfer performance,

broadcast memory through peer to peer, matrix multiplication and add simple numbers helps

the developer to realize how to compile and apply their own CUDA code over DS-CUDA.

However, some times the paths, includes and other issues such architecture of the system

e.g. 32 bit or 64 bit make a major difficulty to test right away. The main idea is to create a

makefile script which can help to automate the whole generation of DS-CUDA SDK process,

configuring according to the user scenario. The basic capabilities of this script are:

• Search over all directories and generate the proper sample.

• Select between TCP socket library or IB verbs (if a viable in the system).

• Generate all binaries with normalized names.

• Distinguish between Linux OS 64/32 bits.

• Set the paths for DS-CUDA.

• Locate CUDA distribution and paths.

35

Chapter 4 DS-CUDA

Start

./

MainMakefile

Last Directory?

./Individual

Makefile

Calling

aux.mk

Checking

Properties

Everything

ok?
ExitMake Binary

no

yes

no

Exit

yes

Figure 4.15: Makefile script algorithm for DS-CUDA SDK.

The main algorithm is depicted in Figure 4.15. A main makefile is located inside of the

top path of DS-CUDA. One auxiliary file is located inside of the script folder, which is called

by all the individual make files inside of the SDK samples.

The Figure 4.16 prints out all the binaries generated with our script. We can observe

that all the names are normalized with the name rpc because they were generated under

this constraint. If we choose IB verb protocol, a suffix ibv will concatenate the binary name.

4.4.4 Github repository for DS-CUDA

DS-CUDA package can be found in http://narumi.cs.uec.ac.jp/dscuda/ as a tar package.

Inside of the package the last version of DS-CUDA and samples can be found. Of course

this is common way to distribute our technology with other people, in order to make them

know the latest enhancements of our development. Nevertheless, the usage of hosting web

services have become widely popular among developers. Using such kind of tools in the

cloud bring us some useful capabilities to track and keep the development of DS-CUDA. We

propose to use GitHub hosting web provider since git4 is very popular among the Linux OS,

4Distributed revision control created by Linus Torvals for Linux kernel.

36

Section 4.4 Development Contributions for DS-CUDA

Figure 4.16: DS-CUDA SDK generated with our makefile script.

37

Chapter 4 DS-CUDA

which are the main target for DS-CUDA framework. Also, GitHub provides free account

with indefinite storage but each repository may do not overpass 1GB and no more than 100

MB per file. You can have as many repositories as you desire. Another important issue for

free accounts is that the repository must be on the public domain, which is not a restriction

for DS-CUDA due to its open source nature. We hosted all versions of DS-CUDA inside of

the https://github.com/Daweek/Original SC. All of them are a viable for downloading and

its free. You can get it from the address above or you can try inside of your terminal with

the next instructions:

First

Install git on your Linux system: apt-get install git

Second

Add the remote repository: git remote add origin https://github.com/Daweek/

Original SC.git

Third

Pull the code from the repository: git fetch –all

Fourth

Reset to the last version: git reset –hard origin/master

Using GitHub help us to keep control of DS-CUDA versions as well as distributing this

to major audience.

38

5

Claret,Molecular Dynamics

visualization software

The molecular dynamics simulation (MD) is a natural phenomena descriptor of the matter

structure and composition which runs over a computer. This especial software has helped to

the better understanding and interpretation of certain material structures. The MD simula-

tion has arisen as a part of Physics Theory, Chemistry, Mathematics and Computer Science.

This discipline is dedicated to apply simulation techniques in which atoms and molecules

interact whit each other by a certain and quantified amount of time, thus be able to visualize

though the computer the evolution and behaviour of the system. Sure enough, this simula-

tions pushes to the limit the power inside of the machine’s hardware due to heavy and many

computations per body in the system.

5.1 General Process of MD simulation

The molecular dynamic simulation are the answer of the integration of Newton’s motion

laws, as well as the description of approximate force field generated based on the particle

interactions. It is true that there is not only one definitive simulator of MD, there are many

which offers many different capabilities and implements different algorithms. Some of them

are ACEMD [16], OpenMM [17], NAMD [15] and Amber[14], which uses GPU or another

special hardware accelerator. Even with all differences in the variety of simulators, all of

them may follow a similar process which is described in Figure 5.1.

The MD simulation itself is a numeric solution of the motion equations, solving present

forces acting on the atoms derivated from the potential energy of its 3 spacial components

(x, y & z). The time step is particularly small, from the order of t ∼ 103 − 106 steps which

corresponds to some nano seconds in the real life.

39

Chapter 5 Claret,Molecular Dynamics visualization software

!"#$#%&#'()%$*+,)-*,#$#*",)

.*+-/$()$0()1*23(

4*5()$0()%$*+,

.0**,()%),+%&&)$#+(),$(-)

!"32(%,()$0()$#+(),$(-

6#"#,0)$0()47)
,#+/&%$#*"8

9$%2$

:";

"*

<(,

Figure 5.1: General algorithm flow of a molecular dynamic simulation.

40

Section 5.2 Claret overview

Figure 5.2: Claret simulator, screen-shot.

5.2 Claret overview

Claret MD simulator was born as a educational software purposes developed by Dr. Takahiro

Koishi. This software was mainly developed to show the massive computational power of the

Molecular Dynamics Gravity Pipe (MD-GRAPE 2). This special purpose hardware allows

the acceleration of the MD by using several process in parallel. This devices was developed in

The University of Tokyo [24] [25] and lately taken by the Natural Sciences Research Institute

(RIKEN). This special purpose hardware has been used to achieve the Gordon Bell price 1 of

best performance on 1995, 1996 and 1999 editions. Claret is written in C language and uses

OpenGL for rendering the particles. On its first stages of development, MDGRAPE libraries

were included. Nowadays, claret is an educational purpose software used to understand basic

MD between particles and also to learn parallel computing techniques. The source code is

open and can be downloaded from this address http://atlas.riken.go.jp/∼koishi/claret e.html.

Inside of the simulator we can appreciate sodium (Na+) and chloride (Cl-) particles,

a salt crystal which can be viewed on the Figure 5.2. All the particles reside at vacuum

level, delimited by a cubic sub space in the visualization. Also, includes variation of the

temperature and pressure. If the crystal reaches its boiling or fusion steps, the particles are

not able to scape from the wall.

Inside of the application we can visualize the particles behaviour in real time through

different capabilities that the software offers, such as:

• Real time visualization of the particle conglomerate.

1The Gordon Bell Prize is awarded each year to recognize outstanding achievement in high-performance
computing.

41

Chapter 5 Claret,Molecular Dynamics visualization software

Key Action

q Exit

v Visible information on/off

t Temperature +100K

g Temperature -100K

y Temperature +10K

h TTemperature -10K

! Restart

z Pause or Continue

s Change the time step +10× 10−15 sec.

c Change background color

M 27 ion for collision

N 4 ion for collision

m 1 negative ion for collision

n 1 positive ion for collision

1-9 Velocity for collision or number of particles in the system

space Shot ion for collision

Table 5.1: List of keyboard actions inside of Claret

• Different vision/camera angle.

• Increase - Decrease the temperature.

• Extra ion collision.

• Particle rendering using textures and polygons.

• Useful information of the system: Force performance computation and frames/sec.

• Stereoscopic vision2.

Some of the capabilities are enabled during compilation time using the # define C di-

rective such as the ability of rendering with polygons or textures, stereoscopic vision and the

usage of an external accelerator. Other options inside of claret can be enabled by pressing

some specific keys, as is shown in Table 5.1.

For the keyboard numbers 2 options are provided: 1. Select the velocity collision for

the new generated ions. To shoot space key is required to press. 2. Select the number of

ions present in the whole simulation. This particular number is a multiple of 8. If X =

{1, 2, 3, 4, 5, 6, 7, 8, 9} then the total amount of particles, is n = X×X×X×8. In this sense,

8 is the minimum and 5832 the maximum.

2For 3D vision a special high frequency display and special glasses are need it

42

Section 5.3 Technical Specifications

5.3 Technical Specifications

Claret MD simulator follows a general process as the one depicted in Figure 5.1. Next we

enlisted all the process that are involved in the main body of the code.

1

2 void main (i n t argc , char ∗∗ argv)

3 {

4 // Var iab l e s and memory a l l o c a t i o n

5 // S ta r t i n g OpenGL s ta t e

6 g l u t I n i t (&argc , argv) ;

7 g lut In i tDisp layMode (GLUTDOUBLE | GLUTRGBA | GLUTDEPTH) ;

8 g lutIn i tWindowPosi t ion (100 , 0) ;

9 glutIn itWindowSize (500 , 500) ;

10 glutCreateWindow (”Claret ver0 .53 ”) ;

11 i n i t () ;

12 keep mem () ;

13 s e t cd () ;

14

15 //Main f low f o r OpenGL

16 glutDisp layFunc (d i s p l ay) ;

17 glutReshapeFunc (reshape) ;

18 glutMouseFunc (mouse) ;

19 glutMotionFunc (motion) ;

20 glutKeyboardFunc(keyboard) ;

21 g lutId leFunc (md run) ;

22

23 //Main loop

24 glutMainLoop () ;

25 }

As we can observe, the visualization is using OpenGL code and the auxiliary library

glut. The first lines of code are for the allocation of memory space for large arrays and

other variables. Also, the OpenGL state is initialized, creating a the appropriate window.

The initial state of the variables, such as, position, pressure, temperature are defined. The

Display function is in charge of all the rendering of polygons-textures that represents the

whole simulation system. Reshape computes the actual deformation, size and angle of the

camera inside of OpenGL. Mouse function enable the mouse input which makes the camera

to rotate. The function Motion computes a new frame according the new angle provided by

43

Chapter 5 Claret,Molecular Dynamics visualization software

A σi + σj C D
(10−19J) (Å) (10−79Jm6) (10−99Jm8)

++ 0.4225 2.34 1.68 0.80
+− 0.3380 2.75 11.20 13.90
−− 0.2535 3.17 116.00 233.00

Table 5.2: Parameters of Tosi-Fumi potential. B = 3.15Å−1

the mouse motion. Keyboard enables the actions provided in Table 5.1. The Md run section

is the core of the MD simulation, where the computation of the force, velocity and other

constants is done. Finally, the Mainloop keeps the simulation alive until the user press “q”

or kill the application.

5.3.1 Force calculation

Inter-ionic potential of a rigid-ion model proposed by Tosi and Fumi [26] is used as a force

field between ions.

φij(r) =
qiqj
r

+AijB exp [
(σi + σj − r)

ρ
]−

Cij

r6
−

Dij

r8
(5.1)

This potential consist of the Coulomb term, a repulsion term, a dipole-dipole term and a

dipole-quadruple term, where qi and qj are electric charge and r its distance between them. It

use the parameters of Equation 5.1 given by Tosi and Fumi. This parameters are showed on

Table 5.2. Time integration is performed with the fifth-order predictor-corrector method [27].

The wall boundary condition is adopted. The system at vacuum level is initially equilibrated

at T = 300K. The number of floating point operations per time-step for calculate force is

n×n×78/t , where n is the number of particles, 78 the amount of operations inside Equation

5.1 and t the time measured between each step.

5.4 Versions

As an educational software package, Claret has suffered alterations on its code, providing it

with some new features. Between these new changes are included: New keyboard actions for

the real time simulation, new visual information, different algorithm for force implementation

on different accelerators e.g GPU and different methods to render the system particles, to

name a few. There is no actual official record of the branching, but in this dissertation we

consider to include 3 major versions.

44

Section 5.4 Versions

Figure 5.3: Claret simulator V 0.11

5.4.1 Claret V 0.11

This was the first version created by Dr. Takahiro Koishi and it can be found on its web

page. The Figure 5.3 shows a screen-shoot of the simulation. Some of the capabilities of this

simulator are listed below:

• Temperature on K scale.

• Number of particles present in the simulation.

• Time step.

It is important to mention that this version do not has the cubic sub space, in other words

the wall is not present. The actions provided by the keyboard remain the same as the showed

in Table 5.1. The particle rendering is done through polygons and the detail level can be

changed by pressing “R” key. All calculation process is done through CPU.

5.4.2 Claret V 0.53

Next major version was 0.53. In this new iteration of claret MD simulator the cubic sub

space wall is present. Also, more information is display on the screen. This version was also

developed by Dr. Takahiro Koishi and the software can be found on http://polymer.apphy.u-

fukui.ac.jp/∼koishi/claret/index.php. The Figure 5.4 shows a picture of this version. Some

of the main capabilities of this version are showed below:

• Temperature on K scale.

45

Chapter 5 Claret,Molecular Dynamics visualization software

Figure 5.4: Claret simulator V 0.53

• Number of particles present in the simulation.

• Time step.

• Flops measurement.

• Frames per second.

For rendering process polygons and textures are a viable. It has stereoscopic vision

enabled. Also the collision of new ions is possible. The force field between atoms can be

computed by MD-GRAPE or CPU hardware.

5.4.3 Claret V 1.0

The next version is developed in Narumi Tetsu lab, which is mainly modified to accelerate

the force computation using GPU hardware accelerator. Figure 5.5 shows and output of the

bodies system in this version. Some of new capabilities are:

• Temperature on K scale.

• Number of particles present in the simulation.

• Time step.

• Flops measurement.

• Frames per second.

• Ion type and charge.

46

Section 5.5 Android Port

Figure 5.5: Claret simulator V 1.0

• Pressure and temperature meter.

• Accelerator type.

This version was created also as a education purpose. Learning the techniques of GPGPU

through CUDA architecture, you can see the impact of performance on Claret. Also, to show

how is the acceleration between using GPU and CPU, Claret software is a interesting and

intuitive way of learning parallel computing.

5.5 Android Port

One of the main purposes of this dissertation is to create applications which merge high

performance computing and mobile devices. The author has a previous experience with

claret using CUDA to accelerate the simulation and the behaviour [30], thus, a port of

this application was one of the first ideas to merge DS-CUDA over Android devices. The

molecular dynamics simulation is an interesting application which has a different impact of

the user experience on the tablet due to its touching capabilities and many sensors. Creating

a more dynamic and immerse interface to interact with atoms its not easy task due to its

ARM processor.

To complete this task first lets look some of the characteristics of claret for PC. As Table

5.3 mention, is a C/C++ based software which uses OpenGL 4.1 for rendering the particles

in the system. Indeed, most of the functions used are based on the specification OpenGL 1.1.

Also uses freeglut library toolkit to make easier the window handling and others. The latest

version of claret for PC includes 3 options to accelerate the force computation: CPU, GPU

with CUDA, and remote GPU with DS-CUDA. Of course, the DS-CUDA version is from PC

47

Chapter 5 Claret,Molecular Dynamics visualization software

Claret

Code C/C++

Code
OpenGL 4.1

freeglut

Accelerator
CPU
CUDA

DS-CUDA

Table 5.3: Technical specifications of Claret version for PC.

Feature OpenGL OpenGL ES

Interface
WGL - Windows

EGLGLX - X11 Linux
CGL - Mac OS

Utility library tool-kit
freeglut

glut - Java only
glut

Rendering Particles
glBegin-glEnd

glDrawArray
glDrawArray

Types supported
Float

Float
Double

Main loop function glutMainLoop()
onCreate()
onPause()
onResume()

Font rendering yes no

Table 5.4: Differences between the usage of OpenGL / OpenGL ES over claret.

(client) to PC (server).

Android ecosystem allows the usage of C/C++ code trough NDK, as well as the usage of

OpenGL ES 1.1 and 2.0. However, at the time we started the porting neither glut or freeglut

were a viable for Android. We tried to compile and use freeglut in order to save as much as

possible and we succeed due to poor documentation and no any guided sample we couldn’t

use. This and other issues are detailed at the time of porting claret to Android are discussed.

5.5.1 Visualization using OpenGL ES 1.1

The first thing to take into account is the life cycle of the app. It is different the development

of Android app than from the usual PC. The Figure 5.6 shows the life cycle of the app in

Android OS. We chose to use OpenGL ES 1.1 due to the similarity of the code included

on claret for PC. Then, we can re-use partial of the code without modification. However,

between OpenGL and OpenGL ES are some differences denoted in Table 5.4

Due to the absence of the glut on C/C++ code for Android, we decided to configure

this over Java. We found out that OpenGL instructions are independent of the code you

are using them. For example, we can initiate the EGL context over Java and continue using

API functions inside of C code. Android provide a class opengl.GLSurfaceView that helps

48

Section 5.5 Android Port

!"#$%$#&'
()*+",-.

!//'/01"-22
3$((-.

1+40-)#-5'6

1+7-2#)0#5'61+8#)0#5'6

1+7-2*9-5'6

!"#$%$#&'
7*++$+:

1+;)*2-5'6

1+8#1/5'6

1+<-2#01&5'6

!"#$%$#&'
2,*#'.1=+

>2-0'+)%$:)#-2
#1'#,-')"#$%$#&

!+1#,-0')"#$%$#&'"19-2'#1'?10-:01*+.

@,-')"#$%$#&'$2'+1'%$2$A(-

@,-')"#$%$#&'$2'.-2#01&-.

>2-0'0-#*0+2
#1'#,-')"#$%$#&

>2-0':1-2
#1'#,-')"#$%$#&

Figure 5.6: Android application life cycle.

to handle the content view for the app. This auxiliary library merge onCreate(), onStart()

and onResume() app states, from the Figure 5.6, for new ones which connects to OpenGL

ES pipeline such as: onSurfaceCreated(), onSurfaceChanged() and onDrawFrame(). All this

three new functions are implemented on C connected trough its proper interface using NDK.

The first function, onSurfaceCreated() some variables and constant are initialized such

as initial temperature, time step, velocity, force and position of the particles. The matrix

model for the OpenGL and colors are initialized as well. Memory space for big arrays is also

allocated. This process is only repeated if the application is restarted or created for the first

time.

The second function, onSurfaceChanged() correspond to the resizing of the gl canvas for

the actual size of the Android tablet. On tablets you may use it as portrait and landscape

mode, which change the total size for the main window buffer in OpenGL. Nonetheless, in

claret for Android we restricted the usage as landscape. The matrix model is defined here

as well as the initial perspective. The depth buffer for color and depth are cleared in this

instance in order to generate new frame.

The third function, onDrawFrame() includes all the rendering part. Basically implements

49

Chapter 5 Claret,Molecular Dynamics visualization software

U p hat

Bottom hat

Body

Figure 5.7: Sphere structure mapped by triangle primitives.

two functions: One which is the core for the MD simulation, including the force of the

particles and other one which renders all the position of the particles. The computation of

some visual information such as amount floating operation per second are performed inside

of this routine.

In the original claret code, textures and polygons are able to draw all the atoms presents

in the simulation. However, for the Android version we decided to use first polygons to render.

Initially a function called glutSolidSphere () from the GLUT library was used to depict all

theses bodies. If we want to render massive number of bodies in the best performance way

in OpenGL [31], the functions of glBegin-glEnd should be avoided. Instead, glDrawArrays

functions should be called.

A detailed explanation of the sphere mapping is given next: The sphere is divided in

3 parts: the up-hat, the body and the bottom-hat. Each part is the result of drawing

consecutive triangles. This is show in Figure 5.7. The amount triangles is due to the graphical

detail given by the number 5 ≤ d ≤ 20 that is the times division on the up hat and s = ⌊d/2⌋

that belongs to the number of the stacks. We can reach every vertex point with the next

equations

x = rsinθcosϕ (5.2)

y = rsinθsinϕ (5.3)

z = rcosθ (5.4)

Where x, y and z are the correspond coordinates, θ = 2×π/d and ϕ = 2× π/(s× 2). We

decide r = 1 in order to calculate the general structure for unitary sphere coordinates. These

unitary vertex and normal values are computed on CPU again if d changes. These values are

store in one array G on constant memory on GPU.

We used 2 buffers to allocate vertex and normal vectors. Finally using glDrawArray()

function, the particles are displayed on the screen. One first trial version is presented in

50

Section 5.5 Android Port

Figure 5.8: First claret version on Android tablet.

A

Figure 5.9: Font rendering using textures and .ttf file.

Figure 5.8.

Another issue in the porting process for claret on Android was the ability to render some

information using text inside of OpenGL ES. Unfortunately this is not possible. For OpenGL

4.1 the is some utility for freeglut library which helps to render some basic text based on

most commons fonts. Nevertheless, we were force to implement some function to display

information on claret. A basic idea is to take some .tff file, which contain the actual font

information, generate the font map inside of textures and allow to draw in OpenGL ES, as

depicted in Figure 5.9.

5.5.2 Enabling DS-CUDA for force computation

As we mentioned in the Chapter 4, DS-CUDA client library is compiled using NDK and could

be used in another projects. In claret for Android, we used as well. We put a CUDA code for

claret through dscudacpp preprocessor and use it as a core for the force computation between

the Na Cl ions. As we can observe in the code above, the libdscuda tcp.a is complementing

the claret.c code. Then, this is compiled as a shared library which is part of the onDrawFrame

() function described in the last section.

51

Chapter 5 Claret,Molecular Dynamics visualization software

1 ## Android .mk f o r C lare t on Android

2 ################Sta t i c Library l i b d s c u da t c p . a

3 LIB LOCAL PATH := $ (c a l l my−d i r)

4 in c lude / usr / l o c a l /DSCUDA/dscudapkg1 . 5 . 2 / s r c /Android/ j n i /Android .mk

5 LOCALPATH := $ (LIB LOCAL PATH)

6

7 ################Sta t i c Library DS−CUDA Routine

8 in c lude $ (CLEAR VARS)

9

10 LOCALMODULE := MR3call

11

12 LOCAL CFLAGS := −O0 −g −P − f f a s t −math − f u n r o l l−l oop s −f p e rm i s s i v e −I .\

13 −I / usr / l o c a l /cuda/ in c lude \

14 −I / usr / l o c a l /DSCUDA/dscudapkg1 . 5 . 2 / in c lude /common/ inc \

15 −I / usr / l o c a l /cuda/ samples /common/ inc −DTCPONLY=1

16

17 LOCAL SRC FILES := mr3 . cpp

18 LOCAL STATIC LIBRARIES := dscuda tcp1 . 7 . 5 . 1

19 LOCAL LDLIBS := − l d l − l l o g

20 in c lude $ (BUILD STATIC LIBRARY)

21 ################Compile C lare t main program

22 in c lude $ (CLEAR VARS)

23

24 LOCALMODULE := c l a r e t

25

26 LOCAL CFLAGS := −g −W −DANDROID NDK −DDISABLE IMPORTGL

27

28 LOCAL SRC FILES := \

29 c l a r e t . c \

30 app−android . cpp \

31

32 LOCAL STATIC LIBRARIES := MR3call

33 LOCAL LDLIBS := −lGLESv1 CM − l d l − l l o g

34

35 in c lude $ (BUILD SHARED LIBRARY)

52

Section 5.5 Android Port

Figure 5.10: Output of claret for Android. Last version.

Finally, we show a picture of the final version of claret on Android tablet. This show less

features than the original one or version 1.0. Due to the time and also proting issues, only

few information is visualized. The functionality that is included in the app are:

• Changing the camera angle through touch screen capabilities.

• Shot 27 new ions.

• Render only (Take the force routine off).

• DS-CUDA as accelerator.

The functionality is limited in this version of claret for Android, however the capability to

use DS-CUDA as an accelerator for force computation has been very attractive to users. We

also distribute this software through Google Play store. The software is under educational

purposes licence and under the name of Edgar Josafat Martinez Noriega. More functionality

for claret on mobile devices, as the previous desktop versions, are part of future plans.

53

6

Evaluation of Claret over

different systems

We successfully integrated DS-CUDA framework for mobile devices, specifically for Android

tablets. We also achieved the port of claret for Android, which is a adequate n-body simula-

tion to test DS-CUDA due to its heavy computations involve. In this section we specify the

components of our system that were used during the experiment. We conform a typical DS-

CUDA system, client (Tablet) and server (Laptop). Also, we tested the first mobile CUDA

capable GPU inside of Jetson K1 development kit.

We performed the measure of the bandwidth performance transporting data through

client and server using different protocols and physical layers. We draw a general model to

describe the performance of claret. Also, a general view of DS-CUDA using tablet versus the

native CUDA for embedded systems is shown. Last, we show a CPU performance of claret

on all different devices we used in the experiment.

6.1 System architecture

The DS-CUDA system is composed as in Figure 6.1. The client is the NVIDIA SHIELD; a

platform gaming device which runs Android. Basically is a tablet with a built-in controller.

The server is a Laptop Alienware equipped with a CUDA capable GPU running Knoppix OS.

We chose a laptop due to its portable purposes in case of demonstration such as conferences

and others. The SHIELD device was chosen due to its rendering power coming from its

gaming platform nature. The SHIELD device is connected to our local network using Wi-Fi

802.11n. The server is connected through Gigabit Ethernet. Detailed explanation of each

component is provided on Table 6.1.

We performed molecular dynamics simulation and visualization using claret over differ-

ent mediums. The Jetson K1 development kit is tested as well. Next sections a detailed

55

Chapter 6 Evaluation of Claret over different systems

Knoppix

DS-CUDA

Server

LAN Network.

NVIDIA

SHIELD

Server Node

Ehternet GiBitEthernet GiBit

Wireless

802.11n

Figure 6.1: System components overview.

Device CPU GPU Memory OS CUDA

Alienware
Knoppix
7.02 32

Intel Core
i7, 2.30
GHz, 8
Cores

GeForce GT
680M, 7 Multi-
Processors, 1344
CUDA Cores,
Global Memory
2047Mbytes.

16 Gbytes,
DDR3,
1600 MHz

Knoppix7.0.2
x86 Linux

Driver
331.62,
Toolkit 6.0,

SDK 6.0

Tegra K1

Intel Core
i7, 2.40
GHz, 8
Cores

Tegra K1
(GK20A), 1
Multiprocessors,
192 CUDA Cores,
Global Memory
1746 Mbytes.

2 Gbytes,
DDR3L,
933 MHz

Linux
for Tegra
(Ubuntu
14.04 for
ARM)

Driver
“Custom
for Jet-
son K1”,
Toolkit 6.0,

SDK 6.0

NVIDIA
“SHIELD”

NVIDIA
Tegra 4,
ARMv7,
1.912 GHz,
4 Cores

NVIDIA AP, 72
Custom Cores,

2 Gbytes,
DDR3L &
LPDDR3

Android
4.4.2

- - -

Table 6.1: Specifications of each component of the system.

56

Section 6.2 Bandwidth performance over different mediums

Figure 6.2: Jetson K1 development kit.

explanation about the experiment is mentioned.

6.2 Bandwidth performance over different mediums

We conducted an experiment in which the performance of the memory copy function is

measured. As we mentioned in Chapter 2, to compute with the GPU, first we have to

migrate the data from the host (CPU) to the device (GPU). This is done through a CUDA

function called cudaMemcpy (). Here you can specify if you want to send data from the

CPU to the GPU Host to Device (H2D) or from the GPU to CPU Device to Host (D2H).

DS-CUDA also implements this function, however the speed of transferring data between the

client and server is not the same due to different buses e.g. Ethernet or PCI express. The aim

of this test is to show the data transfer speed between various mediums and also to calculate

the latency generated in order to complete the analysis for claret in the next section.

We iterate over a loop which send a package and we measured the time to perform the

action. The size of the package initially is set to bytes and it doubles until reach 300 Mbytes.

We choose this limit due to memory management of Android device. The memory transfer

was done trough Jetson K1, PCI express gen 3 X8 and X16 lanes, Gigabit Ethernet, 100M

Based Ethernet and Wi-Fi. For the PCI express and Jestson K1 measurement we used native

CUDA API and nvcc to compile the code. DS-CUDA preprocessor was used in other cases.

100M Based Ethernet was done through the Android tablet using a USB-Ethernet cable

adaptor. Results for this experiment are shown in Tables 6.2 and 6.3.

A full graph of this measurement is shown in Figure 6.3. Next, we performed the mea-

surement of the latency generated over the different mediums. The latency is defined in

57

Chapter 6 Evaluation of Claret over different systems

Test - Size in bytes 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,124

Jetson K1 H2D 16.5436 38.6104 68.2804 115.3441 170.7249 226.5096 288.2094 601.1550 801.9278

Jetson K1 D2H 15.2345 30.3196 56.4063 102.9649 168.6475 265.0135 370.0867 473.1207 554.7091

PCI Ex. gen3 x16 H2D 123.4799 246.6512 493.8694 986.9060 1707.3868 2520.6735 3230.0812 4498.5478 5417.3793

PCI Ex. gen3 x16 D2H 83.4372 164.8430 323.0456 598.6791 1048.0041 1712.2448 2578.8914 3242.7331 3824.5164

PCI Ex. gen3 x8 H2D 108.4942 220.9411 412.1474 652.3812 921.4805 1152.7135 1288.6951 2334.3304 2464.5357

PCI Ex. gen3 x8 D2H 88.8891 140.5244 309.6343 498.7664 698.8008 893.7161 1719.9390 2328.0414 2407.9779

Gigabit H2D 2.4224 1.9678 3.5859 5.6537 7.3602 16.2941 23.3966 43.0115 78.1852

Gigabit D2H 2.4075 3.4797 5.7331 10.7801 19.8839 30.6060 40.8946 46.6500 69.7917

Gigabit H2D 2.3829 4.5106 8.9092 5.9953 8.0703 10.6709 17.8936 44.7310 55.6621

Gigabit D2H 1.9052 2.8307 5.2878 9.9469 17.8264 31.9544 42.9538 61.6025 78.3224

100Base H2D 0.7498 1.3238 1.9393 3.4554 5.6161 6.9986 8.4003 9.1866 10.6754

100Base D2H 0.7297 0.0210 0.3014 0.7566 0.1288 1.0402 1.2159 1.4161 2.0187

Wireless 802.11n H2D 0.3047 0.5141 0.9846 1.5067 2.3050 3.7204 5.1476 6.3466 7.1067

Wireless 802.11n D2H 0.2993 0.3239 0.6289 1.4893 2.0764 3.6316 5.9964 7.7838 9.5621

Table 6.2: Bandwidth performance between different mediums in MBytes. Package size from
1,024 bytes to 262,124 bytes.

Test - Size in bytes 524,288 1,048,576 2,097,152 4,194,304 8,388,608 16,777,216 33,554,432 67,108,864 134,217,728 268,435,456

Jetson K1 H2D 1085.1180 1563.1240 2507.2161 3087.3464 3224.7961 3164.1626 3224.5621 3233.9383 3264.0898 3256.7215

Jetson K1 D2H 601.0634 638.8535 945.0413 1321.9882 1411.7925 1415.7340 1448.3326 1411.6470 1442.6021 1421.3941

PCI Ex. gen3 x16 H2D 5955.9116 6323.6388 7988.1712 8990.2682 9593.7894 9926.9244 10100.1976 10188.1405 10219.4747 10217.2752

PCI Ex. gen3 x16 D2H 4261.4334 4521.1063 5402.7942 5958.3451 6243.9639 6400.9457 6477.7050 6521.2451 6527.7012 6522.2228

PCI Ex. gen3 x8 H2D 2571.3771 4389.3479 5189.7889 5666.9241 5946.2786 6102.0282 6189.6638 6227.7194 6212.3782 6050.4029

PCI Ex. gen3 x8 D2H 2486.0908 2481.5759 4474.1948 5012.6136 5335.0922 5486.3340 5563.9491 5621.8923 5633.9119 5612.8873

Gigabit H2D 99.5929 104.8582 107.9304 109.7768 110.7024 111.1474 111.2350 112.6164 84.1994 84.3711

Gigabit D2H 88.5481 87.9968 92.5851 97.6200 98.4138 99.1563 99.3324 98.9072 74.0344 74.3269

Gigabit H2D 63.5589 66.9117 68.5698 75.3382 62.1478 66.8261 78.9695 72.8281 60.5933 49.9229

Gigabit D2H 83.0734 89.7843 89.0131 90.3493 73.7667 56.8534 89.0131 90.3493 56.8534 55.1797

100Base H2D 11.1035 11.1015 11.2329 11.3453 11.3447 11.3642 11.3731 11.3649 8.5134 8.5052

100Base D2H 4.1338 3.9361 1.8556 4.0876 2.2060 2.2989 2.2222 1.0390 0.5391 0.2462

Wireless 802.11n H2D 7.5368 7.8303 7.4656 7.5245 7.9160 7.5183 7.8949 7.9943 6.09252 5.7483

Wireless 802.11n D2H 10.5434 11.0278 11.2821 10.4856 11.0581 10.6549 11.011 11.0089 8.3021 8.2572

Table 6.3: Bandwidth performance between different mediums in MBytes. Package size from
524,288 bytes to 268,435,456 bytes.

58

Section 6.2 Bandwidth performance over different mediums

D
a

ta
 T

ra
n

s
fe

r
S

p
e

e
d

 (
M

B
y
te

s
/s

e
c
)

0

0

1

10

100

1,000

10,000

Data Transfer Size (bytes)

1,024 4,096 16,384 65,536 262,124 1,048,576 4,194,304 16,777,216 67,108,864 268,435,456

Jetson K1 H2D Jetson K1 D2H PCI Ex. gen3 x16 H2D
PCI Ex. gen3 x16 D2H PCI Ex. gen3 x8 H2D PCI Ex. gen3 x8 D2H
Gigabit H2D Gigabit D2H Gigabit H2D
Gigabit D2H 100Base H2D 100Base D2H
Wireless 802.11n H2D Wireless 802.11n D2H

Figure 6.3: Total performance of cudaMemcpy over different mediums.

Equation 6.1. The minimum and maximum correspond to the data in Tables 6.2 and 6.3.

The minimum package size is defined as 1024 bytes and maximum to 268,435,456 bytes.

L =
MinimumPackageSize

MinimumBandwidth
−

MinimumPackageSize

MaximunBandwidth
(6.1)

Latency data over different mediums is concentrated on Table 6.4. As we expected, Wi-Fi

has the biggest latency which may impact over the application performance sending the data

to the GPU located in DS-CUDA server. Jetson K1 has a latency very similar to PCI express

due to its construction, built in chip. For some unknow reason the 100M USB-Ethernet cable

had some issue when it received data, probably due to the driver version.

Interconnection H2D Latency (sec) D2H Latency (sec)

Jetson K1 6.158E-05 6.650E-05

PCI Express gen3 X16 8.193E-06 1.212E-05

PCI Express gen3 X8 9.269E-06 1.134E-05

Gigabit Ethernet 4.106E-04 4.116E-04

Gigabit Ethernet K1 4.092E-04 5.189E-04

100 Base Ethernet 1.245E-03 -2.756E-03

Wireless 802.11n 3.183E-03 3.297E-03

Table 6.4: Memory latency.

59

Chapter 6 Evaluation of Claret over different systems

6.3 Claret performance model

In this section we present a study of claret performance on different systems using GPU as an

accelerator to compute the force between the particles. Our main target is to measure impor-

tant process during the molecular dynamics visualization on claret such as GPU computation

part, CPU computation part, communication between GPU and CPU and rendering process.

In this way, we can observe and detect possible bottlenecks inside of the application.

The whole claret process is proposed in Equation 6.2, where T is the time per frame

generated on claret, TGPU is the lapse for computation over the GPU, TCPU correspond to all

other process inside of the CPU, TCOMM which is the time for CPU and GPU communication

and TDISP which correspond to the time for rendering the spheres by OpenGL.

T = TGPU + TCPU + TCOMM + TDISP (6.2)

In order to define each member of the Equation 6.2, we need to quantize this small region

of time per particle.

TGPU = md step ∗ t gpu ∗ n2 (6.3)

TCPU = t cpu ∗ n (6.4)

TCOMM = t comm ∗Data ∗ n ∗ t L (6.5)

TDISP = t disp ∗ n (6.6)

Thereby, in Equation 6.3 md step is the molecular dynamics step inside of the simulation.

t gpu is the force computation time between a pair of particles. n is the number of bodies

inside of the simulation. On Equation 6.4, t cpu defines the time per particle inside of the

CPU. Inside of Equation 6.5, t comm is the lapse of time to send data between GPU and

GPU per particle. t L is the latency of the medium used. Equation 6.6 defines the time

per particle t disp to be rendered by OpenGL. We isolated each process of Equation 6.2 on

the code a measured directly, taking the time to perform the subroutine. The information

generated per particle on different systems is concentrated on Table 6.5. We can observe

that for SHIELD t gpu is not present on the table results because it belongs to a DS-CUDA

system which uses the GPU remotely from Alienware laptop.

We set up md step to be 100, in order to reduce the communication between CPU and

GPU. The Data parameter is fixed to 106 which refers to all data in bytes involve to solve

60

Section 6.3 Claret performance model

Jetson K1 Time per Particle

t gpu 5.55E-10

t cpu 3.69E-07

t comm 1.89E-10

t L 9.28E-04

t disp 2.68E-05

AlienWare Time per Particle

t gpu 1.07E-10

t cpu 7.72E-08

t comm 2.32E-08

t L 2.03E-05

t disp 4.84E-06

SHIELD Time per Particle

t cpu 5.76E-06

t comm 8.18E-07

t L 6.48E-03

t disp 1.91E-04

Table 6.5: Time per particle for each process on claret on different systems.

the force between the particles inside of the GPU. Once all the information is gathered, we

proceed to solve Equation 6.2 for all n possible arrangement of particles in claret. In Table

6.6 we show these results. We included the simulation time as well.

Figures 6.4, 6.5 and 6.6 shows individual graphs for claret performance on Alienware

laptop, Jetson K1 and SHIELD device respectively. Using the model we proposed and also

the data taken from the real simulation. As we can observe, all tthree graphs have gaps

at the beginning which are caused by the refresh of the screen. The simulation can not go

faster than the refresh rate of the screen due to OpenGL rendering. However, the dotted line

matches the model after this barrier is broken.

Figures 6.7, 6.8 and 6.9 shows each phase of whole process in claret software. The results

using CUDA native (Alienware and Jetson K1) are very similar, the bottleneck for small

amount of particles is the communication between CPU and GPU. Altough, increasing the

number of bodies in the system, we reduce this problem. The rendering part for both system

is not a problem. However, for SHIELD using DS-CUDA we found that for small amount of

particles the communication (usign Wi-Fi) generates a bottleneck. Nevertheless, increasing

the number of particles, the real bottleneck become the visualization. This is due to portable

devices do not has a powerful GPU that can render a lot of polygons on the screen. One

possible solution is to use textures instead of drawing triangles. This will be included as a

61

Chapter 6 Evaluation of Claret over different systems

Particles 8 64 216 512 1000 1728 2744 4096 5832

TGPU 3.55E-06 2.27E-04 2.59E-03 1.45E-02 5.55E-02 1.66E-01 4.18E-01 9.31E-01 1.89E+00

TCPU 2.95E-06 2.36E-05 7.96E-05 1.89E-04 3.69E-04 6.37E-04 1.01E-03 1.51E-03 2.15E-03

TCOMM 9.28E-04 9.29E-04 9.33E-04 9.39E-04 9.49E-04 9.63E-04 9.84E-04 1.01E-03 1.05E-03

TDISP 2.14E-04 1.71E-03 5.78E-03 1.37E-02 2.68E-02 4.63E-02 7.35E-02 1.10E-01 1.56E-01

Model K1 1.15E-03 2.89E-03 9.39E-03 2.94E-02 8.36E-02 2.14E-01 4.93E-01 1.04E+00 2.05E+00

Simulation K1 2.900E-02 3.300E-02 7.600E-02 1.040E-01 1.660E-01 2.560E-01 5.400E-01 1.022E+00 1.951E+00

TGPU 6.840E-07 4.377E-05 4.986E-04 2.801E-03 1.069E-02 3.191E-02 8.047E-02 1.793E-01 3.635E-01

TCPU 6.176E-07 4.941E-06 1.668E-05 3.953E-05 7.720E-05 1.334E-04 2.118E-04 3.162E-04 4.502E-04

TCOMM 4.033E-05 1.805E-04 5.608E-04 1.302E-03 2.523E-03 4.345E-03 6.887E-03 1.027E-02 1.461E-02

TDISP 3.874E-05 3.099E-04 1.046E-03 2.479E-03 4.842E-03 8.367E-03 1.329E-02 1.983E-02 2.824E-02

Model Alien 8.037E-05 5.391E-04 2.122E-03 6.622E-03 1.813E-02 4.476E-02 1.009E-01 2.097E-01 4.068E-01

Simulation Alien 1.700E-02 1.800E-02 1.900E-02 1.900E-02 2.300E-02 4.300E-02 9.300E-02 1.730E-01 3.270E-01

TGPU 6.840E-07 4.377E-05 4.986E-04 2.801E-03 1.069E-02 3.191E-02 8.047E-02 1.793E-01 3.635E-01

TCPU 4.608E-05 3.686E-04 1.244E-03 2.949E-03 5.760E-03 9.953E-03 1.580E-02 2.359E-02 3.359E-02

TCOMM 7.187E-03 1.214E-02 2.557E-02 5.173E-02 9.485E-02 1.592E-01 2.490E-01 3.685E-01 5.219E-01

TDISP 1.531E-03 1.225E-02 4.134E-02 9.800E-02 1.914E-01 3.308E-01 5.252E-01 7.840E-01 1.116E+00

Model SHIELD 8.765E-03 2.480E-02 6.865E-02 1.555E-01 3.027E-01 5.318E-01 8.705E-01 1.355E+00 2.035E+00

Simulation SHIELD 2.047E-01 2.170E-01 2.515E-01 3.477E-01 4.450E-01 5.549E-01 7.564E-01 1.014E+00 1.366E+00

Table 6.6: Model and simulations results of claret performance.

T
im

e
 (

s
e

c
o

n
d

s
)

0.00

0.00

0.01

0.10

Number of Particles

8 64 216 512 1000 1728 2744 4096 5832

Model Alien Simulation Alien

Figure 6.4: Total claret performance on Alienware - Model vs Simulation

62

Section 6.3 Claret performance model

T
im

e
 (

s
e

c
o

n
d

s
)

0.00

0.00

0.01

0.10

1.00

10.00

8 64 216 2744 4096 5832

Number of Particles

512 1000 1728

Model K1 Simulation K1

Figure 6.5: Total claret performance on Jetson K1 - Model vs Simulation

T
im

e
 (

s
e

c
o

n
d

s
)

0.00

0.00

0.01

0.10

1.00

10.00

Number of Particles

8 64 216 512 1000 1728 2744 4096

Model SHIELD Simulation SHIELD

Figure 6.6: Total claret performance on SHIELD - Model vs Simulation

63

Chapter 6 Evaluation of Claret over different systems

P
e

rc
e

n
ta

g
e

 o
f
e

a
c
h

 p
ro

c
e

s
s
 o

n
 C

la
re

t
(M

o
d

e
l

V
a

lu
e

s
)

0%

25%

50%

75%

100%

Number of Particles

8 64 216 512 1000 1728 2744 4096 5832

T_GPU T_CPU T_COMM T_DISP

Figure 6.7: Percentage of each process on claret performance - Alienware.

future work.

In this section we also included the measurement of the claret application running only on

mobile devices. This is due to principal motivation and objective of this dissertation. Figure

6.10 and Figure 6.11 shows the result between Jetson K1 and SHIELD running claret. We can

denote that for the total time on Jetson for low amount of particles is one order of magnitude

than in SHIELD using DS-CUDA. However, for large amount of particles, the curve shows

better performance, even with the bottleneck over the communication and rendering part

for SHIELD. The amount of floating operations per second is calculated as mentioned in

Chapter 5, n × n × 78/t , where n is the number of particles, 78 the amount of operations

inside Equation 5.1 and t the time measured between each step. For SHIELD and Jetson

K1 we see similar trajectories due to usage of CUDA in both scenarios. However, SHIELD

through DS-CUDA accelerates slowly compare with native CUDA due to the communication

between server and client. Nevertheless, DS-CUDA shows better amount of operations per

second when the amount of particles is more than 2744.

Last, we show a graph, Figure 6.12, which contain the measurement of the force compu-

tation in claret using only the CPU. Clearly the laptop is superior due to better processor

inside. SHIELD shows more than one order of magnitud less performance with its ARM

CPU. Interestingly, Jetson is located right in the middle which reduces the barrier for the

future mobile devices to half due to similar processors will be included as Tegra K1.

64

Section 6.3 Claret performance model

P
e

rc
e

n
ta

g
e

 o
f
e

a
c
h

 p
ro

c
e

s
s
 o

n
 C

la
re

t
(M

o
d

e
l

V
a

lu
e

s
)

0%

25%

50%

75%

100%

Number of Particles

8 64 216 512 1000 1728 2744 4096 5832

T_GPU T_CPU T_COMM T_DISP

Figure 6.8: Percentage of each process on claret performance - Jetson K1.

P
e

rc
e

n
ta

g
e

 o
f
e

a
c
h

 p
ro

c
e

s
s
 o

n
 C

la
re

t
(M

o
d

e
l

V
a

lu
e

s
)

0%

25%

50%

75%

100%

Number of Particles

8 64 216 512 1000 1728 2744 4096 5832

T_GPU T_CPU T_COMM T_DISP

Figure 6.9: Percentage of each process on claret performance - SHIELD.

65

Chapter 6 Evaluation of Claret over different systems
T

im
e

 s
e

c
.

1.000E-02

1.000E-01

1.000E+00

1.000E+01

Number of Particles

8 64 216 512 1000 1728 2744 4096 5832

Tegra K1 SHIELD

Figure 6.10: Real time claret performance on Mobile Devices.

G
fl
o

p
s

0.000

0.000

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

Number of Particles

8 64 216 512 1000 1728 2744 4096 5832

Tegra K1 SHIELD

Figure 6.11: Force computation of claret on Mobile Devices. Accelerator GPU.

66

Section 6.3 Claret performance model

C
a

lc
u

la
ti
o

n
 S

p
e

e
d

 (
G

fl
o

p
s
)

0.001

0.01

0.1

1

10

Number of Particles

8 64 216 512 1000 1728 2744 4096 5832

Alienware Tegra K1 SHIELD

Figure 6.12: Force computation of claret using CPU only.

67

7

Conclusion

The usage of accelerators in high performance computing is more common now, such as the

graphics processing unit through the hand of CUDA architecture. As a natural consequence,

in order to handle a numerous GPUs in the cloud intermediate frameworks a software level

has been developed such as DS-CUDA. This framework which visualizes a GPU inside of

the local networks was our starting point to idealized the merge between high performance

computing and mobile devices. In this work, we successfully achieved the acceleration and

implementation of a molecular dynamics simulation and visualization on an Android tablet

using a remote GPU to compute force between atoms inside of the system. We handle the

cross compiling code for a client DS-CUDA library in order to use CUDA code inside of

our Android application. We also achieved the porting of a molecular dynamics software,

“claret” on Android tablet using OpenGL ES. Various differences were challenged as a re-

sult of versions inequalities between OpenGL and OpenGL ES such as rendering of spheres

without supporting libraries and displaying font. As a result, claret has touching capabilities

which makes totally different experience from the original version over desktop computers.

We also provided a detailed analysis of the claret software including communication time,

visualization time and the core process for molecular dynamics. From the results presented in

Chapter 6 we can observe that DS-CUDA seems to be feasible solution in order to accelerate

the n-body simulation. Even for a big number of bodies, DS-CUDA over wireless protocol

works better than the embedded system Jetson K1. However, the actual problem in the sim-

ulation is the rendering time due to the low power GPU inside of the tablet. Nevertheless,

this bottleneck could be alleviated if the number of primitives (triangles) per sphere reduces

or changed for textures.

69

Chapter 7 Conclusion

7.1 Future Work

A better implementation on OpenGL ES for rendering the spehere could be a future topic.

Using textures or only rendering points to see the peak performance. Also, make an analysis

of the power consumption over DS-CUDA system using the tablet. This could be compared

between Jetson K1 and see how much flop/watt is given by the system. A interactivity

application with the usage of tile display is also consider as a future topic.

DS-CUDA framework still need more functions to be implemented such as support for

graphics interoperability with CUDA. As well as some Basic Linear Algebra Sub-programs

(BLAS) which could be a future topic to implement. A complete system which could handle

automatic recovering error and load balancing is also planned in future schedule.

70

References

[1] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and A. Konagaya.

“Protein explorer: A petaflops special-purpose computer system for molecular dynamics

simulations. ”, In Proceedings of the ACM/IEEE SC2003 Conference, November 2003.

[2] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon,

C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P.

Grossman, C. R. Ho, D. J. Ierardi, I. Kolossv?ry, J. L. Klepeis, T. Layman, C. McLeavey,

M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles,

and S. C. Wang., “Anton, a special-purpose machine for molecular dynamics simulation.

”, In Proceedings of the 34th International Symposium on Computer Architecture, June

2007.

[3] Bakker, A.F., Gilmer,G.H.,Grabow, M.H., Thompson,K. “A special purpose computer

for molecular dynamics calculations ”, J.Comput. Phys. 1990, 90, 313-35.

[4] Fine, R., Dimmler, G., Levinthal, C. “FASTRUN: A special purpose, hardwired computer

for molecular simulation ”, Protein Struc. Funct. Genet. 1991, 11, 242-53.

[5] Yuri N. “Performance analysis of clearspeed’s CSX600 interconnects, in Parallel and

Distributed Processing with Applications ”, 2009 IEEE International Symposium, pp.

203-10

[6] England, J.N., “A system for interactive modeling of physical curved surface objects.”,

In Proceedings of SIGGRAPH 78 1978, 336-340. 1978.

[7] Potmesil, M. and Hoffert, E.M., “The Pixel Machine: A Parallel Image Computer.”, In

Proceedings of SIGGRAPH 89 1989, ACM, 69-78. 1989.

[8] Rhoades, J., Turk, G., Bell, A., State, A., Neumann, U. and Varshney, “A. Real-Time

Procedural Textures”, In Proceedings of Symposium on Interactive 3D Graphics 1992,

ACM / ACM Press, 95-100. 1992.

71

References

[9] Y Weng, C Cao, Q Hou, K Zhou, “Real-time facial animation on mobile devices ”,

Computational Visual Media Conference 2013,Volume 76, Issue 3, May 2014, Pages

172?179.

[10] Pei-Jung Lin, Sheng-Chang Chen, Yi-Hsung Li, Meng-Syue Wu, Shih-Yue Chen, “An

Implementation of Augmented Reality and Location Awareness Services in Mobile De-

vices ”, Lecture Notes in Electrical Engineering Volume 274, 2014, pp 509-514.

[11] M Bedford, T Wheeler, J Bloor, “Directing specialist care through alerting to mobile

devices ”, International Digital Health and Care Congress, The King’s Fund, London,

September 10-12 2014.

[12] M Miknis, P Plassmann, C Jones, “Virtual environment stereo image capture using the

Unreal Development Kit”, Computer and Information Technology (GSCIT),14-16 June

2014,1 - 5.

[13] S Burigat, L Chittaro, “Visualizing the results of interactive queries for geographic data

on mobile devices”, Proceedings of the 13th annual ACM international workshop on

Geographic information systems,Pages 277 - 284, New York, NY, USA ?2005.

[14] Hailong Yang, Bo Li, Yongjian Wang, Zhongzhi Luan, Depei Qian and Tianshu Chu

“Accelerating Dock6s Amber Scoring with Graphic Processing Unit ”, Department of

Computer Scinece and Engineering, Sino-German Joint Software Institute, Beihang Uni-

versity, 2010, China.

[15] G. Shi and V. Kindratenko, “Implementation of NAMD molecular dynamics non-bonded

forcefield on the Cell Broadband Engine processor”, In Proceedings of the 9th Inter-

national Workshop on Parallel and Distributed Scientific and Engineering Computing,

April 2008.

[16] Harvey, M.J., Giupponi, G., De Fabritiis, G. “ACEMD: Accelerating biomolecular dy-

namics in the microsecond time scale”, J. Chem. Theory Comput. 2009, 5, 1632-9.

[17] Friedrichs, M.S., Eastman, P., Eastman, P., Vaidyanathan, V., Houston, M., Le Grand,

S., Beberg, A.L. Ensing, D. L., Bruns, C.M., Pande, “Accelerating molecular dynamic

simulation on graphics processing units.”, J. Comput. Chem. 2009, 30, 864-72.

[18] ANSI-IEEE 754-1985. “American National Standard – IEEE Standard for Binary

Floating-Point Arithmetic.”, American National Standards Institute, Inc., New York,

1985.

72

References

[19] Stratton, J. A., Stone, S. S.,Hwu, W. W. “MCUDA: An Efficient Implementation of

CUDA Kernels for Multi-Core CPUs.”, In Proceedings of the 21st International Work-

shop on Languages and Compilers for Parallel Computing LCPC. Canada: Edmonton.

2008.

[20] NVIDIA Corporation, “The CUDA Compiler Driver NVCC”, CUDA Compiler Driver

ver ¡10-18-2011¿ pdf. 2011. pag. 22

[21] TOP500 Supercomputer Sites, . Available: http://www.top500.org/ [retrieved: Novem-

ber, 2014]

[22] Atsushi Kawai, Kenji Y asuoka, Kazuyuki Y oshikawa, and Tetsu Narumi, “Distributed-

Shared CUDA: Virtualization of Large-Scale GPU Systems for Programability and Re-

liability”, The Fourth International Conference on Future Computational Technologies

and Applications, Nice, France, 2012

[23] M. Oikawa, A. Kawai, K. Nomura, K. Yoshikawa, K. Yasuoka, T. Narumi, “DS-CUDA:

a Middleware to Use Many GPUs in the Cloud Environment”, Inter- national Workshop

on Sustainable HPC Cloud at SC12, Salt Lake City, USA, 2012.

[24] Taiji, M., Fukushige, T., Makino, J., Ebisuzaki, T., and Sugimoto, D., “MD-GRAPE:

A Parallel Special-Purpose Computer System for Classical Molecular Dynamics Simu-

lations.”, Physics Computing ’94 Lugano, Switzerland, in Proceedings of the 6th Joint

EPS-APS international conference on Physics Computing, European Physical Society,

Geneva, pp. 200-203, 1994.

[25] Fukushige, T., Taiji, M., Makino, J., Ebisuzaki, T., and Sugimoto, D., “A Highly-

Parallelized Special-Purpose Computer for Many-body Simulations with An Arbitrary

Central Force: MD-GRAPE.”, Astrophysical Journal, 468, pp. 51-61, 1996.

[26] M.P. Tosi,F.G. Fumi, “J. Phys.Chem. Solids”, 25, 1964, 45.

[27] M.P. Allen,D.J. Tildesley, “Computer Simulation Liquids”, Clarendon,Oxford,1987.

[28] Martin Cooper, et al., “Radio Telephone System”, US Patent number 3,906,166; Filing

date: 17 October 1973; Issue date: September 1975; Assignee Motorola.

[29] Haire, Meaghan, “A Brief History of The Walkman”, Time. Retrieved 2010-12-24.

[30] Mart́ınez Noriega Edgar Josafat, Narumi Tetsu, “High Performance N-Body Simula-

tion and Visualization through CUDA Arcuitecture”, The 25th UEC International Mini-

Conference for International Students, Tokyo-Japan, March, 2011, pp 59,64.

73

References

[31] Matthias Trapp, “OpenGL-Performance and Bottlenecks”, Seminar, University of Post-

dam, Winter semester 2003.

74

